reth_engine_tree/
backfill.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
//! It is expected that the node has two sync modes:
//!
//!  - Backfill sync: Sync to a certain block height in stages, e.g. download data from p2p then
//!    execute that range.
//!  - Live sync: In this mode the node is keeping up with the latest tip and listens for new
//!    requests from the consensus client.
//!
//! These modes are mutually exclusive and the node can only be in one mode at a time.

use futures::FutureExt;
use reth_provider::providers::ProviderNodeTypes;
use reth_stages_api::{ControlFlow, Pipeline, PipelineError, PipelineTarget, PipelineWithResult};
use reth_tasks::TaskSpawner;
use std::task::{ready, Context, Poll};
use tokio::sync::oneshot;
use tracing::trace;

/// Represents the state of the backfill synchronization process.
#[derive(Debug, PartialEq, Eq, Default)]
pub enum BackfillSyncState {
    /// The node is not performing any backfill synchronization.
    /// This is the initial or default state.
    #[default]
    Idle,
    /// A backfill synchronization has been requested or planned, but processing has not started
    /// yet.
    Pending,
    /// The node is actively engaged in backfill synchronization.
    Active,
}

impl BackfillSyncState {
    /// Returns true if the state is idle.
    pub const fn is_idle(&self) -> bool {
        matches!(self, Self::Idle)
    }

    /// Returns true if the state is pending.
    pub const fn is_pending(&self) -> bool {
        matches!(self, Self::Pending)
    }

    /// Returns true if the state is active.
    pub const fn is_active(&self) -> bool {
        matches!(self, Self::Active)
    }
}

/// Backfill sync mode functionality.
pub trait BackfillSync: Send + Sync {
    /// Performs a backfill action.
    fn on_action(&mut self, action: BackfillAction);

    /// Polls the pipeline for completion.
    fn poll(&mut self, cx: &mut Context<'_>) -> Poll<BackfillEvent>;
}

/// The backfill actions that can be performed.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum BackfillAction {
    /// Start backfilling with the given target.
    Start(PipelineTarget),
}

/// The events that can be emitted on backfill sync.
#[derive(Debug)]
pub enum BackfillEvent {
    /// Backfill sync started.
    Started(PipelineTarget),
    /// Backfill sync finished.
    ///
    /// If this is returned, backfill sync is idle.
    Finished(Result<ControlFlow, PipelineError>),
    /// Sync task was dropped after it was started, unable to receive it because
    /// channel closed. This would indicate a panicked task.
    TaskDropped(String),
}

/// Pipeline sync.
#[derive(Debug)]
pub struct PipelineSync<N: ProviderNodeTypes> {
    /// The type that can spawn the pipeline task.
    pipeline_task_spawner: Box<dyn TaskSpawner>,
    /// The current state of the pipeline.
    /// The pipeline is used for large ranges.
    pipeline_state: PipelineState<N>,
    /// Pending target block for the pipeline to sync
    pending_pipeline_target: Option<PipelineTarget>,
}

impl<N: ProviderNodeTypes> PipelineSync<N> {
    /// Create a new instance.
    pub fn new(pipeline: Pipeline<N>, pipeline_task_spawner: Box<dyn TaskSpawner>) -> Self {
        Self {
            pipeline_task_spawner,
            pipeline_state: PipelineState::Idle(Some(pipeline)),
            pending_pipeline_target: None,
        }
    }

    /// Returns `true` if a pipeline target is queued and will be triggered on the next `poll`.
    #[allow(dead_code)]
    const fn is_pipeline_sync_pending(&self) -> bool {
        self.pending_pipeline_target.is_some() && self.pipeline_state.is_idle()
    }

    /// Returns `true` if the pipeline is idle.
    const fn is_pipeline_idle(&self) -> bool {
        self.pipeline_state.is_idle()
    }

    /// Returns `true` if the pipeline is active.
    const fn is_pipeline_active(&self) -> bool {
        !self.is_pipeline_idle()
    }

    /// Sets a new target to sync the pipeline to.
    ///
    /// But ensures the target is not the zero hash.
    fn set_pipeline_sync_target(&mut self, target: PipelineTarget) {
        if target.sync_target().is_some_and(|target| target.is_zero()) {
            trace!(
                target: "consensus::engine::sync",
                "Pipeline target cannot be zero hash."
            );
            // precaution to never sync to the zero hash
            return
        }
        self.pending_pipeline_target = Some(target);
    }

    /// This will spawn the pipeline if it is idle and a target is set or if the pipeline is set to
    /// run continuously.
    fn try_spawn_pipeline(&mut self) -> Option<BackfillEvent> {
        match &mut self.pipeline_state {
            PipelineState::Idle(pipeline) => {
                let target = self.pending_pipeline_target.take()?;
                let (tx, rx) = oneshot::channel();

                let pipeline = pipeline.take().expect("exists");
                self.pipeline_task_spawner.spawn_critical_blocking(
                    "pipeline task",
                    Box::pin(async move {
                        let result = pipeline.run_as_fut(Some(target)).await;
                        let _ = tx.send(result);
                    }),
                );
                self.pipeline_state = PipelineState::Running(rx);

                Some(BackfillEvent::Started(target))
            }
            PipelineState::Running(_) => None,
        }
    }

    /// Advances the pipeline state.
    ///
    /// This checks for the result in the channel, or returns pending if the pipeline is idle.
    fn poll_pipeline(&mut self, cx: &mut Context<'_>) -> Poll<BackfillEvent> {
        let res = match self.pipeline_state {
            PipelineState::Idle(_) => return Poll::Pending,
            PipelineState::Running(ref mut fut) => {
                ready!(fut.poll_unpin(cx))
            }
        };
        let ev = match res {
            Ok((pipeline, result)) => {
                self.pipeline_state = PipelineState::Idle(Some(pipeline));
                BackfillEvent::Finished(result)
            }
            Err(why) => {
                // failed to receive the pipeline
                BackfillEvent::TaskDropped(why.to_string())
            }
        };
        Poll::Ready(ev)
    }
}

impl<N: ProviderNodeTypes> BackfillSync for PipelineSync<N> {
    fn on_action(&mut self, event: BackfillAction) {
        match event {
            BackfillAction::Start(target) => self.set_pipeline_sync_target(target),
        }
    }

    fn poll(&mut self, cx: &mut Context<'_>) -> Poll<BackfillEvent> {
        // try to spawn a pipeline if a target is set
        if let Some(event) = self.try_spawn_pipeline() {
            return Poll::Ready(event)
        }

        // make sure we poll the pipeline if it's active, and return any ready pipeline events
        if self.is_pipeline_active() {
            // advance the pipeline
            if let Poll::Ready(event) = self.poll_pipeline(cx) {
                return Poll::Ready(event)
            }
        }

        Poll::Pending
    }
}

/// The possible pipeline states within the sync controller.
///
/// [`PipelineState::Idle`] means that the pipeline is currently idle.
/// [`PipelineState::Running`] means that the pipeline is currently running.
///
/// NOTE: The differentiation between these two states is important, because when the pipeline is
/// running, it acquires the write lock over the database. This means that we cannot forward to the
/// blockchain tree any messages that would result in database writes, since it would result in a
/// deadlock.
#[derive(Debug)]
enum PipelineState<N: ProviderNodeTypes> {
    /// Pipeline is idle.
    Idle(Option<Pipeline<N>>),
    /// Pipeline is running and waiting for a response
    Running(oneshot::Receiver<PipelineWithResult<N>>),
}

impl<N: ProviderNodeTypes> PipelineState<N> {
    /// Returns `true` if the state matches idle.
    const fn is_idle(&self) -> bool {
        matches!(self, Self::Idle(_))
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test_utils::{insert_headers_into_client, TestPipelineBuilder};
    use alloy_consensus::Header;
    use alloy_primitives::{BlockNumber, B256};
    use assert_matches::assert_matches;
    use futures::poll;
    use reth_chainspec::{ChainSpecBuilder, MAINNET};
    use reth_network_p2p::test_utils::TestFullBlockClient;
    use reth_primitives::SealedHeader;
    use reth_provider::test_utils::MockNodeTypesWithDB;
    use reth_stages::ExecOutput;
    use reth_stages_api::StageCheckpoint;
    use reth_tasks::TokioTaskExecutor;
    use std::{collections::VecDeque, future::poll_fn, sync::Arc};

    struct TestHarness {
        pipeline_sync: PipelineSync<MockNodeTypesWithDB>,
        tip: B256,
    }

    impl TestHarness {
        fn new(total_blocks: usize, pipeline_done_after: u64) -> Self {
            let chain_spec = Arc::new(
                ChainSpecBuilder::default()
                    .chain(MAINNET.chain)
                    .genesis(MAINNET.genesis.clone())
                    .paris_activated()
                    .build(),
            );

            // force the pipeline to be "done" after `pipeline_done_after` blocks
            let pipeline = TestPipelineBuilder::new()
                .with_pipeline_exec_outputs(VecDeque::from([Ok(ExecOutput {
                    checkpoint: StageCheckpoint::new(BlockNumber::from(pipeline_done_after)),
                    done: true,
                })]))
                .build(chain_spec.clone());

            let pipeline_sync = PipelineSync::new(pipeline, Box::<TokioTaskExecutor>::default());
            let client = TestFullBlockClient::default();
            let header = Header {
                base_fee_per_gas: Some(7),
                gas_limit: chain_spec.max_gas_limit,
                ..Default::default()
            };
            let header = SealedHeader::seal(header);
            insert_headers_into_client(&client, header, 0..total_blocks);

            let tip = client.highest_block().expect("there should be blocks here").hash();

            Self { pipeline_sync, tip }
        }
    }

    #[tokio::test]
    async fn pipeline_started_and_finished() {
        const TOTAL_BLOCKS: usize = 10;
        const PIPELINE_DONE_AFTER: u64 = 5;
        let TestHarness { mut pipeline_sync, tip } =
            TestHarness::new(TOTAL_BLOCKS, PIPELINE_DONE_AFTER);

        let sync_future = poll_fn(|cx| pipeline_sync.poll(cx));
        let next_event = poll!(sync_future);

        // sync target not set, pipeline not started
        assert_matches!(next_event, Poll::Pending);

        pipeline_sync.on_action(BackfillAction::Start(PipelineTarget::Sync(tip)));

        let sync_future = poll_fn(|cx| pipeline_sync.poll(cx));
        let next_event = poll!(sync_future);

        // sync target set, pipeline started
        assert_matches!(next_event, Poll::Ready(BackfillEvent::Started(target)) => {
            assert_eq!(target.sync_target().unwrap(), tip);
        });

        // the next event should be the pipeline finishing in a good state
        let sync_future = poll_fn(|cx| pipeline_sync.poll(cx));
        let next_ready = sync_future.await;
        assert_matches!(next_ready, BackfillEvent::Finished(result) => {
            assert_matches!(result, Ok(control_flow) => assert_eq!(control_flow, ControlFlow::Continue { block_number: PIPELINE_DONE_AFTER }));
        });
    }
}