reth_exex/backfill/
job.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
use crate::StreamBackfillJob;
use std::{
    ops::RangeInclusive,
    time::{Duration, Instant},
};

use alloy_consensus::BlockHeader;
use alloy_primitives::BlockNumber;
use reth_evm::execute::{
    BatchExecutor, BlockExecutionError, BlockExecutionOutput, BlockExecutorProvider, Executor,
};
use reth_node_api::{Block as _, BlockBody as _, NodePrimitives};
use reth_primitives::{BlockExt, BlockWithSenders, Receipt};
use reth_primitives_traits::{format_gas_throughput, SignedTransaction};
use reth_provider::{
    BlockReader, Chain, HeaderProvider, ProviderError, StateProviderFactory, TransactionVariant,
};
use reth_prune_types::PruneModes;
use reth_revm::database::StateProviderDatabase;
use reth_stages_api::ExecutionStageThresholds;
use reth_tracing::tracing::{debug, trace};

pub(super) type BackfillJobResult<T> = Result<T, BlockExecutionError>;

/// Backfill job started for a specific range.
///
/// It implements [`Iterator`] that executes blocks in batches according to the provided thresholds
/// and yields [`Chain`]. In other words, this iterator can yield multiple items for the given range
/// depending on the configured thresholds.
#[derive(Debug)]
pub struct BackfillJob<E, P> {
    pub(crate) executor: E,
    pub(crate) provider: P,
    pub(crate) prune_modes: PruneModes,
    pub(crate) thresholds: ExecutionStageThresholds,
    pub(crate) range: RangeInclusive<BlockNumber>,
    pub(crate) stream_parallelism: usize,
}

impl<E, P> Iterator for BackfillJob<E, P>
where
    E: BlockExecutorProvider<Primitives: NodePrimitives<Block = P::Block>>,
    P: HeaderProvider + BlockReader<Transaction: SignedTransaction> + StateProviderFactory,
{
    type Item = BackfillJobResult<Chain<E::Primitives>>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.range.is_empty() {
            return None
        }

        Some(self.execute_range())
    }
}

impl<E, P> BackfillJob<E, P>
where
    E: BlockExecutorProvider<Primitives: NodePrimitives<Block = P::Block>>,
    P: BlockReader<Transaction: SignedTransaction> + HeaderProvider + StateProviderFactory,
{
    /// Converts the backfill job into a single block backfill job.
    pub fn into_single_blocks(self) -> SingleBlockBackfillJob<E, P> {
        self.into()
    }

    /// Converts the backfill job into a stream.
    pub fn into_stream(self) -> StreamBackfillJob<E, P, Chain<E::Primitives>> {
        self.into()
    }

    fn execute_range(&mut self) -> BackfillJobResult<Chain<E::Primitives>> {
        debug!(
            target: "exex::backfill",
            range = ?self.range,
            "Executing block range"
        );

        let mut executor = self.executor.batch_executor(StateProviderDatabase::new(
            self.provider.history_by_block_number(self.range.start().saturating_sub(1))?,
        ));
        executor.set_prune_modes(self.prune_modes.clone());

        let mut fetch_block_duration = Duration::default();
        let mut execution_duration = Duration::default();
        let mut cumulative_gas = 0;
        let batch_start = Instant::now();

        let mut blocks = Vec::new();
        for block_number in self.range.clone() {
            // Fetch the block
            let fetch_block_start = Instant::now();

            // we need the block's transactions along with their hashes
            let block = self
                .provider
                .sealed_block_with_senders(block_number.into(), TransactionVariant::WithHash)?
                .ok_or_else(|| ProviderError::HeaderNotFound(block_number.into()))?;

            fetch_block_duration += fetch_block_start.elapsed();

            cumulative_gas += block.gas_used();

            // Configure the executor to use the current state.
            trace!(target: "exex::backfill", number = block_number, txs = block.body.transactions().len(), "Executing block");

            // Execute the block
            let execute_start = Instant::now();

            // Unseal the block for execution
            let (block, senders) = block.into_components();
            let (unsealed_header, hash) = block.header.split();
            let block = P::Block::new(unsealed_header, block.body).with_senders_unchecked(senders);

            executor.execute_and_verify_one(&block)?;
            execution_duration += execute_start.elapsed();

            // TODO(alexey): report gas metrics using `block.header.gas_used`

            // Seal the block back and save it
            blocks.push(block.seal_unchecked(hash));

            // Check if we should commit now
            let bundle_size_hint = executor.size_hint().unwrap_or_default() as u64;
            if self.thresholds.is_end_of_batch(
                block_number - *self.range.start(),
                bundle_size_hint,
                cumulative_gas,
                batch_start.elapsed(),
            ) {
                break
            }
        }

        let last_block_number = blocks.last().expect("blocks should not be empty").number();
        debug!(
            target: "exex::backfill",
            range = ?*self.range.start()..=last_block_number,
            block_fetch = ?fetch_block_duration,
            execution = ?execution_duration,
            throughput = format_gas_throughput(cumulative_gas, execution_duration),
            "Finished executing block range"
        );
        self.range = last_block_number + 1..=*self.range.end();

        let chain = Chain::new(blocks, executor.finalize(), None);
        Ok(chain)
    }
}

/// Single block Backfill job started for a specific range.
///
/// It implements [`Iterator`] which executes a block each time the
/// iterator is advanced and yields ([`BlockWithSenders`], [`BlockExecutionOutput`])
#[derive(Debug, Clone)]
pub struct SingleBlockBackfillJob<E, P> {
    pub(crate) executor: E,
    pub(crate) provider: P,
    pub(crate) range: RangeInclusive<BlockNumber>,
    pub(crate) stream_parallelism: usize,
}

impl<E, P> Iterator for SingleBlockBackfillJob<E, P>
where
    E: BlockExecutorProvider<Primitives: NodePrimitives<Block = P::Block>>,
    P: HeaderProvider + BlockReader + StateProviderFactory,
{
    type Item = BackfillJobResult<(
        BlockWithSenders<P::Block>,
        BlockExecutionOutput<<E::Primitives as NodePrimitives>::Receipt>,
    )>;

    fn next(&mut self) -> Option<Self::Item> {
        self.range.next().map(|block_number| self.execute_block(block_number))
    }
}

impl<E, P> SingleBlockBackfillJob<E, P>
where
    E: BlockExecutorProvider<Primitives: NodePrimitives<Block = P::Block>>,
    P: HeaderProvider + BlockReader + StateProviderFactory,
{
    /// Converts the single block backfill job into a stream.
    pub fn into_stream(
        self,
    ) -> StreamBackfillJob<E, P, (BlockWithSenders, BlockExecutionOutput<Receipt>)> {
        self.into()
    }

    #[expect(clippy::type_complexity)]
    pub(crate) fn execute_block(
        &self,
        block_number: u64,
    ) -> BackfillJobResult<(
        BlockWithSenders<P::Block>,
        BlockExecutionOutput<<E::Primitives as NodePrimitives>::Receipt>,
    )> {
        // Fetch the block with senders for execution.
        let block_with_senders = self
            .provider
            .block_with_senders(block_number.into(), TransactionVariant::WithHash)?
            .ok_or_else(|| ProviderError::HeaderNotFound(block_number.into()))?;

        // Configure the executor to use the previous block's state.
        let executor = self.executor.executor(StateProviderDatabase::new(
            self.provider.history_by_block_number(block_number.saturating_sub(1))?,
        ));

        trace!(target: "exex::backfill", number = block_number, txs = block_with_senders.block.body().transactions().len(), "Executing block");

        let block_execution_output = executor.execute(&block_with_senders)?;

        Ok((block_with_senders, block_execution_output))
    }
}

impl<E, P> From<BackfillJob<E, P>> for SingleBlockBackfillJob<E, P> {
    fn from(job: BackfillJob<E, P>) -> Self {
        Self {
            executor: job.executor,
            provider: job.provider,
            range: job.range,
            stream_parallelism: job.stream_parallelism,
        }
    }
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use crate::{
        backfill::test_utils::{blocks_and_execution_outputs, chain_spec, to_execution_outcome},
        BackfillJobFactory,
    };
    use reth_blockchain_tree::noop::NoopBlockchainTree;
    use reth_db_common::init::init_genesis;
    use reth_evm_ethereum::execute::EthExecutorProvider;
    use reth_primitives::public_key_to_address;
    use reth_provider::{
        providers::BlockchainProvider, test_utils::create_test_provider_factory_with_chain_spec,
    };
    use reth_testing_utils::generators;
    use secp256k1::Keypair;

    #[test]
    fn test_backfill() -> eyre::Result<()> {
        reth_tracing::init_test_tracing();

        // Create a key pair for the sender
        let key_pair = Keypair::new_global(&mut generators::rng());
        let address = public_key_to_address(key_pair.public_key());

        let chain_spec = chain_spec(address);

        let executor = EthExecutorProvider::ethereum(chain_spec.clone());
        let provider_factory = create_test_provider_factory_with_chain_spec(chain_spec.clone());
        init_genesis(&provider_factory)?;
        let blockchain_db = BlockchainProvider::new(
            provider_factory.clone(),
            Arc::new(NoopBlockchainTree::default()),
        )?;

        let blocks_and_execution_outputs =
            blocks_and_execution_outputs(provider_factory, chain_spec, key_pair)?;
        let (block, block_execution_output) = blocks_and_execution_outputs.first().unwrap();
        let execution_outcome = to_execution_outcome(block.number, block_execution_output);

        // Backfill the first block
        let factory = BackfillJobFactory::new(executor, blockchain_db);
        let job = factory.backfill(1..=1);
        let chains = job.collect::<Result<Vec<_>, _>>()?;

        // Assert that the backfill job produced the same chain as we got before when we were
        // executing only the first block
        assert_eq!(chains.len(), 1);
        let mut chain = chains.into_iter().next().unwrap();
        chain.execution_outcome_mut().bundle.reverts.sort();
        assert_eq!(chain.blocks(), &[(1, block.clone())].into());
        assert_eq!(chain.execution_outcome(), &execution_outcome);

        Ok(())
    }

    #[test]
    fn test_single_block_backfill() -> eyre::Result<()> {
        reth_tracing::init_test_tracing();

        // Create a key pair for the sender
        let key_pair = Keypair::new_global(&mut generators::rng());
        let address = public_key_to_address(key_pair.public_key());

        let chain_spec = chain_spec(address);

        let executor = EthExecutorProvider::ethereum(chain_spec.clone());
        let provider_factory = create_test_provider_factory_with_chain_spec(chain_spec.clone());
        init_genesis(&provider_factory)?;
        let blockchain_db = BlockchainProvider::new(
            provider_factory.clone(),
            Arc::new(NoopBlockchainTree::default()),
        )?;

        let blocks_and_execution_outcomes =
            blocks_and_execution_outputs(provider_factory, chain_spec, key_pair)?;

        // Backfill the first block
        let factory = BackfillJobFactory::new(executor, blockchain_db);
        let job = factory.backfill(1..=1);
        let single_job = job.into_single_blocks();
        let block_execution_it = single_job.into_iter();

        // Assert that the backfill job only produces a single block
        let blocks_and_outcomes = block_execution_it.collect::<Vec<_>>();
        assert_eq!(blocks_and_outcomes.len(), 1);

        // Assert that the backfill job single block iterator produces the expected output for each
        // block
        for (i, res) in blocks_and_outcomes.into_iter().enumerate() {
            let (block, mut execution_output) = res?;
            execution_output.state.reverts.sort();

            let sealed_block_with_senders = blocks_and_execution_outcomes[i].0.clone();
            let expected_block = sealed_block_with_senders.unseal();
            let expected_output = &blocks_and_execution_outcomes[i].1;

            assert_eq!(block, expected_block);
            assert_eq!(&execution_output, expected_output);
        }

        Ok(())
    }
}