reth_primitives_traits/
crypto.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
//! Crypto utilities.

use crate::transaction::signature::Signature;
use alloy_primitives::U256;

/// The order of the secp256k1 curve, divided by two. Signatures that should be checked according
/// to EIP-2 should have an S value less than or equal to this.
///
/// `57896044618658097711785492504343953926418782139537452191302581570759080747168`
pub const SECP256K1N_HALF: U256 = U256::from_be_bytes([
    0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0x5D, 0x57, 0x6E, 0x73, 0x57, 0xA4, 0x50, 0x1D, 0xDF, 0xE9, 0x2F, 0x46, 0x68, 0x1B, 0x20, 0xA0,
]);

/// Secp256k1 utility functions.
pub mod secp256k1 {
    use super::*;
    use revm_primitives::{Address, B256};

    #[cfg(not(feature = "secp256k1"))]
    use super::impl_k256 as imp;
    #[cfg(feature = "secp256k1")]
    use super::impl_secp256k1 as imp;

    pub use imp::{public_key_to_address, sign_message};

    /// Recover signer from message hash, _without ensuring that the signature has a low `s`
    /// value_.
    ///
    /// Using this for signature validation will succeed, even if the signature is malleable or not
    /// compliant with EIP-2. This is provided for compatibility with old signatures which have
    /// large `s` values.
    pub fn recover_signer_unchecked(signature: &Signature, hash: B256) -> Option<Address> {
        let mut sig: [u8; 65] = [0; 65];

        sig[0..32].copy_from_slice(&signature.r().to_be_bytes::<32>());
        sig[32..64].copy_from_slice(&signature.s().to_be_bytes::<32>());
        sig[64] = signature.v() as u8;

        // NOTE: we are removing error from underlying crypto library as it will restrain primitive
        // errors and we care only if recovery is passing or not.
        imp::recover_signer_unchecked(&sig, &hash.0).ok()
    }

    /// Recover signer address from message hash. This ensures that the signature S value is
    /// greater than `secp256k1n / 2`, as specified in
    /// [EIP-2](https://eips.ethereum.org/EIPS/eip-2).
    ///
    /// If the S value is too large, then this will return `None`
    pub fn recover_signer(signature: &Signature, hash: B256) -> Option<Address> {
        if signature.s() > SECP256K1N_HALF {
            return None
        }

        recover_signer_unchecked(signature, hash)
    }
}

#[cfg(any(test, feature = "secp256k1"))]
#[allow(unused, unreachable_pub)]
mod impl_secp256k1 {
    use super::*;
    pub(crate) use ::secp256k1::Error;
    use ::secp256k1::{
        ecdsa::{RecoverableSignature, RecoveryId},
        Message, PublicKey, SecretKey, SECP256K1,
    };
    use alloy_primitives::{keccak256, Address, B256, U256};

    /// Recovers the address of the sender using secp256k1 pubkey recovery.
    ///
    /// Converts the public key into an ethereum address by hashing the public key with keccak256.
    ///
    /// This does not ensure that the `s` value in the signature is low, and _just_ wraps the
    /// underlying secp256k1 library.
    pub(crate) fn recover_signer_unchecked(
        sig: &[u8; 65],
        msg: &[u8; 32],
    ) -> Result<Address, Error> {
        let sig =
            RecoverableSignature::from_compact(&sig[0..64], RecoveryId::from_i32(sig[64] as i32)?)?;

        let public = SECP256K1.recover_ecdsa(&Message::from_digest(*msg), &sig)?;
        Ok(public_key_to_address(public))
    }

    /// Signs message with the given secret key.
    /// Returns the corresponding signature.
    pub fn sign_message(secret: B256, message: B256) -> Result<Signature, Error> {
        let sec = SecretKey::from_slice(secret.as_ref())?;
        let s = SECP256K1.sign_ecdsa_recoverable(&Message::from_digest(message.0), &sec);
        let (rec_id, data) = s.serialize_compact();

        let signature = Signature::new(
            U256::try_from_be_slice(&data[..32]).expect("The slice has at most 32 bytes"),
            U256::try_from_be_slice(&data[32..64]).expect("The slice has at most 32 bytes"),
            rec_id.to_i32() != 0,
        );
        Ok(signature)
    }

    /// Converts a public key into an ethereum address by hashing the encoded public key with
    /// keccak256.
    pub fn public_key_to_address(public: PublicKey) -> Address {
        // strip out the first byte because that should be the SECP256K1_TAG_PUBKEY_UNCOMPRESSED
        // tag returned by libsecp's uncompressed pubkey serialization
        let hash = keccak256(&public.serialize_uncompressed()[1..]);
        Address::from_slice(&hash[12..])
    }
}

#[cfg_attr(feature = "secp256k1", allow(unused, unreachable_pub))]
mod impl_k256 {
    use super::*;
    use alloy_primitives::{keccak256, Address, B256};
    pub(crate) use k256::ecdsa::Error;
    use k256::ecdsa::{RecoveryId, SigningKey, VerifyingKey};

    /// Recovers the address of the sender using secp256k1 pubkey recovery.
    ///
    /// Converts the public key into an ethereum address by hashing the public key with keccak256.
    ///
    /// This does not ensure that the `s` value in the signature is low, and _just_ wraps the
    /// underlying secp256k1 library.
    pub(crate) fn recover_signer_unchecked(
        sig: &[u8; 65],
        msg: &[u8; 32],
    ) -> Result<Address, Error> {
        let mut signature = k256::ecdsa::Signature::from_slice(&sig[0..64])?;
        let mut recid = sig[64];

        // normalize signature and flip recovery id if needed.
        if let Some(sig_normalized) = signature.normalize_s() {
            signature = sig_normalized;
            recid ^= 1;
        }
        let recid = RecoveryId::from_byte(recid).expect("recovery ID is valid");

        // recover key
        let recovered_key = VerifyingKey::recover_from_prehash(&msg[..], &signature, recid)?;
        Ok(public_key_to_address(recovered_key))
    }

    /// Signs message with the given secret key.
    /// Returns the corresponding signature.
    pub fn sign_message(secret: B256, message: B256) -> Result<Signature, Error> {
        let sec = SigningKey::from_slice(secret.as_ref())?;
        sec.sign_prehash_recoverable(&message.0).map(Into::into)
    }

    /// Converts a public key into an ethereum address by hashing the encoded public key with
    /// keccak256.
    pub fn public_key_to_address(public: VerifyingKey) -> Address {
        let hash = keccak256(&public.to_encoded_point(/* compress = */ false).as_bytes()[1..]);
        Address::from_slice(&hash[12..])
    }
}

#[cfg(test)]
mod tests {
    use alloy_primitives::{keccak256, B256};

    #[cfg(feature = "secp256k1")]
    #[test]
    fn sanity_ecrecover_call_secp256k1() {
        use super::impl_secp256k1::*;

        let (secret, public) = secp256k1::generate_keypair(&mut rand::thread_rng());
        let signer = public_key_to_address(public);

        let message = b"hello world";
        let hash = keccak256(message);
        let signature =
            sign_message(B256::from_slice(&secret.secret_bytes()[..]), hash).expect("sign message");

        let mut sig: [u8; 65] = [0; 65];
        sig[0..32].copy_from_slice(&signature.r().to_be_bytes::<32>());
        sig[32..64].copy_from_slice(&signature.s().to_be_bytes::<32>());
        sig[64] = signature.v() as u8;

        assert_eq!(recover_signer_unchecked(&sig, &hash), Ok(signer));
    }

    #[cfg(not(feature = "secp256k1"))]
    #[test]
    fn sanity_ecrecover_call_k256() {
        use super::impl_k256::*;

        let secret = k256::ecdsa::SigningKey::random(&mut rand::thread_rng());
        let public = *secret.verifying_key();
        let signer = public_key_to_address(public);

        let message = b"hello world";
        let hash = keccak256(message);
        let signature =
            sign_message(B256::from_slice(&secret.to_bytes()[..]), hash).expect("sign message");

        let mut sig: [u8; 65] = [0; 65];
        sig[0..32].copy_from_slice(&signature.r().to_be_bytes::<32>());
        sig[32..64].copy_from_slice(&signature.s().to_be_bytes::<32>());
        sig[64] = signature.v() as u8;

        assert_eq!(recover_signer_unchecked(&sig, &hash).ok(), Some(signer));
    }

    #[test]
    fn sanity_secp256k1_k256_compat() {
        use super::{impl_k256, impl_secp256k1};

        let (secp256k1_secret, secp256k1_public) =
            secp256k1::generate_keypair(&mut rand::thread_rng());
        let k256_secret = k256::ecdsa::SigningKey::from_slice(&secp256k1_secret.secret_bytes())
            .expect("k256 secret");
        let k256_public = *k256_secret.verifying_key();

        let secp256k1_signer = impl_secp256k1::public_key_to_address(secp256k1_public);
        let k256_signer = impl_k256::public_key_to_address(k256_public);
        assert_eq!(secp256k1_signer, k256_signer);

        let message = b"hello world";
        let hash = keccak256(message);

        let secp256k1_signature = impl_secp256k1::sign_message(
            B256::from_slice(&secp256k1_secret.secret_bytes()[..]),
            hash,
        )
        .expect("secp256k1 sign");
        let k256_signature =
            impl_k256::sign_message(B256::from_slice(&k256_secret.to_bytes()[..]), hash)
                .expect("k256 sign");
        assert_eq!(secp256k1_signature, k256_signature);

        let mut sig: [u8; 65] = [0; 65];

        sig[0..32].copy_from_slice(&secp256k1_signature.r().to_be_bytes::<32>());
        sig[32..64].copy_from_slice(&secp256k1_signature.s().to_be_bytes::<32>());
        sig[64] = secp256k1_signature.v() as u8;
        let secp256k1_recovered =
            impl_secp256k1::recover_signer_unchecked(&sig, &hash).expect("secp256k1 recover");
        assert_eq!(secp256k1_recovered, secp256k1_signer);

        sig[0..32].copy_from_slice(&k256_signature.r().to_be_bytes::<32>());
        sig[32..64].copy_from_slice(&k256_signature.s().to_be_bytes::<32>());
        sig[64] = k256_signature.v() as u8;
        let k256_recovered =
            impl_k256::recover_signer_unchecked(&sig, &hash).expect("k256 recover");
        assert_eq!(k256_recovered, k256_signer);

        assert_eq!(secp256k1_recovered, k256_recovered);
    }
}