reth_etl/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
//! ETL data collector.
//!
//! This crate is useful for dumping unsorted data into temporary files and iterating on their
//! sorted representation later on.
//!
//! This has multiple uses, such as optimizing database inserts (for Btree based databases) and
//! memory management (as it moves the buffer to disk instead of memory).

#![doc(
    html_logo_url = "https://raw.githubusercontent.com/paradigmxyz/reth/main/assets/reth-docs.png",
    html_favicon_url = "https://avatars0.githubusercontent.com/u/97369466?s=256",
    issue_tracker_base_url = "https://github.com/paradigmxyz/reth/issues/"
)]
#![cfg_attr(not(test), warn(unused_crate_dependencies))]
#![cfg_attr(docsrs, feature(doc_cfg, doc_auto_cfg))]

use std::{
    cmp::Reverse,
    collections::BinaryHeap,
    io::{self, BufReader, BufWriter, Read, Seek, SeekFrom, Write},
    path::{Path, PathBuf},
};

/// Key len and Value len encode use [`usize::to_be_bytes()`] the length is 8.
const KV_LEN: usize = 8;

use rayon::prelude::*;
use reth_db_api::table::{Compress, Encode, Key, Value};
use tempfile::{NamedTempFile, TempDir};

/// An ETL (extract, transform, load) data collector.
///
/// Data is pushed (extract) to the collector which internally flushes the data in a sorted
/// (transform) manner to files of some specified capacity. the data can later be iterated over
/// (load) in a sorted manner.
///
/// Used mainly to insert data into `MDBX` in a sorted manner. This is important because performance
/// and storage space degrades greatly if the data is inserted unsorted (eg. tables with hashes as
/// keys.) as opposed to append & sorted insert. Some benchmarks can be found [here](https://github.com/paradigmxyz/reth/pull/1130#issuecomment-1418642755).
#[derive(Debug)]
pub struct Collector<K, V>
where
    K: Encode + Ord,
    V: Compress,
{
    /// Parent directory where to create ETL files
    parent_dir: Option<PathBuf>,
    /// Directory for temporary file storage
    dir: Option<TempDir>,
    /// Collection of temporary ETL files
    files: Vec<EtlFile>,
    /// Current buffer size in bytes
    buffer_size_bytes: usize,
    /// Maximum buffer capacity in bytes, triggers flush when reached
    buffer_capacity_bytes: usize,
    /// In-memory buffer storing encoded and compressed key-value pairs
    buffer: Vec<(<K as Encode>::Encoded, <V as Compress>::Compressed)>,
    /// Total number of elements in the collector, including all files
    len: usize,
}

impl<K, V> Collector<K, V>
where
    K: Key,
    V: Value,
{
    /// Create a new collector with some capacity.
    ///
    /// Once the capacity (in bytes) is reached, the data is sorted and flushed to disk.
    pub const fn new(buffer_capacity_bytes: usize, parent_dir: Option<PathBuf>) -> Self {
        Self {
            parent_dir,
            dir: None,
            buffer_size_bytes: 0,
            files: Vec::new(),
            buffer_capacity_bytes,
            buffer: Vec::new(),
            len: 0,
        }
    }

    /// Returns number of elements currently in the collector.
    pub const fn len(&self) -> usize {
        self.len
    }

    /// Returns `true` if there are currently no elements in the collector.
    pub const fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Clears the collector, removing all data, including the temporary directory.
    pub fn clear(&mut self) {
        self.dir = None;
        // Clear vectors and free the allocated memory
        self.files = Vec::new();
        self.buffer = Vec::new();
        self.buffer_size_bytes = 0;
        self.len = 0;
    }

    /// Insert an entry into the collector.
    pub fn insert(&mut self, key: K, value: V) -> io::Result<()> {
        let key = key.encode();
        let value = value.compress();
        self.buffer_size_bytes += key.as_ref().len() + value.as_ref().len();
        self.buffer.push((key, value));
        if self.buffer_size_bytes > self.buffer_capacity_bytes {
            self.flush()?;
        }
        self.len += 1;

        Ok(())
    }

    /// Returns a reference to the temporary directory used by the collector. If the directory
    /// doesn't exist, it will be created.
    fn dir(&mut self) -> io::Result<&TempDir> {
        if self.dir.is_none() {
            self.dir = match &self.parent_dir {
                Some(dir) => {
                    if !dir.exists() {
                        std::fs::create_dir_all(dir)?;
                    }
                    Some(TempDir::new_in(dir)?)
                }
                None => Some(TempDir::new()?),
            };
        }
        Ok(self.dir.as_ref().unwrap())
    }

    fn flush(&mut self) -> io::Result<()> {
        self.buffer_size_bytes = 0;
        self.buffer.par_sort_unstable_by(|a, b| a.0.cmp(&b.0));
        let mut buf = Vec::with_capacity(self.buffer.len());
        std::mem::swap(&mut buf, &mut self.buffer);

        let path = self.dir()?.path().to_path_buf();
        self.files.push(EtlFile::new(path.as_path(), buf)?);

        Ok(())
    }

    /// Returns an iterator over the collector data.
    ///
    /// The items of the iterator are sorted across all underlying files.
    ///
    /// # Note
    ///
    /// The keys and values have been pre-encoded, meaning they *SHOULD NOT* be encoded or
    /// compressed again.
    pub fn iter(&mut self) -> std::io::Result<EtlIter<'_>> {
        // Flush the remaining items to disk
        if self.buffer_size_bytes > 0 {
            self.flush()?;
        }

        let mut heap = BinaryHeap::new();
        for (current_id, file) in self.files.iter_mut().enumerate() {
            if let Some((current_key, current_value)) = file.read_next()? {
                heap.push((Reverse((current_key, current_value)), current_id));
            }
        }

        Ok(EtlIter { heap, files: &mut self.files })
    }
}

/// Type alias for the items stored in the heap of [`EtlIter`].
///
/// Each item in the heap is a tuple containing:
/// - A `Reverse` tuple of a key-value pair (`Vec<u8>, Vec<u8>`), used to maintain the heap in
///   ascending order of keys.
/// - An index (`usize`) representing the source file from which the key-value pair was read.
type HeapItem = (Reverse<(Vec<u8>, Vec<u8>)>, usize);

/// `EtlIter` is an iterator for traversing through sorted key-value pairs in a collection of ETL
/// files. These files are created using the [`Collector`] and contain data where keys are encoded
/// and values are compressed.
///
/// This iterator returns each key-value pair in ascending order based on the key.
/// It is particularly designed to efficiently handle large datasets by employing a binary heap for
/// managing the iteration order.
#[derive(Debug)]
pub struct EtlIter<'a> {
    /// Heap managing the next items to be iterated.
    heap: BinaryHeap<HeapItem>,
    /// Reference to the vector of ETL files being iterated over.
    files: &'a mut Vec<EtlFile>,
}

impl EtlIter<'_> {
    /// Peeks into the next element
    pub fn peek(&self) -> Option<&(Vec<u8>, Vec<u8>)> {
        self.heap.peek().map(|(Reverse(entry), _)| entry)
    }
}

impl Iterator for EtlIter<'_> {
    type Item = std::io::Result<(Vec<u8>, Vec<u8>)>;

    fn next(&mut self) -> Option<Self::Item> {
        // Get the next sorted entry from the heap
        let (Reverse(entry), id) = self.heap.pop()?;

        // Populate the heap with the next entry from the same file
        match self.files[id].read_next() {
            Ok(Some((key, value))) => {
                self.heap.push((Reverse((key, value)), id));
                Some(Ok(entry))
            }
            Ok(None) => Some(Ok(entry)),
            err => err.transpose(),
        }
    }
}

/// A temporary ETL file.
#[derive(Debug)]
struct EtlFile {
    file: BufReader<NamedTempFile>,
    len: usize,
}

impl EtlFile {
    /// Create a new file with the given data (which should be pre-sorted) at the given path.
    ///
    /// The file will be a temporary file.
    pub(crate) fn new<K, V>(dir: &Path, buffer: Vec<(K, V)>) -> std::io::Result<Self>
    where
        Self: Sized,
        K: AsRef<[u8]>,
        V: AsRef<[u8]>,
    {
        let file = NamedTempFile::new_in(dir)?;
        let mut w = BufWriter::new(file);
        for entry in &buffer {
            let k = entry.0.as_ref();
            let v = entry.1.as_ref();

            w.write_all(&k.len().to_be_bytes())?;
            w.write_all(&v.len().to_be_bytes())?;
            w.write_all(k)?;
            w.write_all(v)?;
        }

        let mut file = BufReader::new(w.into_inner()?);
        file.seek(SeekFrom::Start(0))?;
        let len = buffer.len();
        Ok(Self { file, len })
    }

    /// Read the next entry in the file.
    ///
    /// Can return error if it reaches EOF before filling the internal buffers.
    pub(crate) fn read_next(&mut self) -> std::io::Result<Option<(Vec<u8>, Vec<u8>)>> {
        if self.len == 0 {
            return Ok(None)
        }

        let mut buffer_key_length = [0; KV_LEN];
        let mut buffer_value_length = [0; KV_LEN];

        self.file.read_exact(&mut buffer_key_length)?;
        self.file.read_exact(&mut buffer_value_length)?;

        let key_length = usize::from_be_bytes(buffer_key_length);
        let value_length = usize::from_be_bytes(buffer_value_length);
        let mut key = vec![0; key_length];
        let mut value = vec![0; value_length];

        self.file.read_exact(&mut key)?;
        self.file.read_exact(&mut value)?;

        self.len -= 1;

        Ok(Some((key, value)))
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloy_primitives::{TxHash, TxNumber};

    #[test]
    fn etl_hashes() {
        let mut entries: Vec<_> =
            (0..10_000).map(|id| (TxHash::random(), id as TxNumber)).collect();

        let mut collector = Collector::new(1024, None);
        assert!(collector.dir.is_none());

        for (k, v) in entries.clone() {
            collector.insert(k, v).unwrap();
        }
        entries.sort_unstable_by_key(|entry| entry.0);

        for (id, entry) in collector.iter().unwrap().enumerate() {
            let expected = entries[id];
            assert_eq!(
                entry.unwrap(),
                (expected.0.encode().to_vec(), expected.1.compress().clone())
            );
        }

        let temp_dir_path = collector.dir.as_ref().unwrap().path().to_path_buf();

        collector.clear();
        assert!(collector.dir.is_none());
        assert!(collector.files.is_empty());
        assert_eq!(collector.buffer_size_bytes, 0);
        assert!(collector.buffer.is_empty());
        assert_eq!(collector.len, 0);
        assert!(collector.is_empty());
        assert!(!temp_dir_path.exists());
    }
}