reth_ecies/
algorithm.rs

1#![allow(missing_docs)]
2
3use crate::{
4    error::ECIESErrorImpl,
5    mac::MAC,
6    util::{hmac_sha256, sha256},
7    ECIESError,
8};
9use aes::{cipher::StreamCipher, Aes128, Aes256};
10use alloy_primitives::{
11    bytes::{BufMut, Bytes, BytesMut},
12    Keccak256, B128, B256, B512 as PeerId,
13};
14use alloy_rlp::{Encodable, Rlp, RlpEncodable, RlpMaxEncodedLen};
15use byteorder::{BigEndian, ByteOrder, ReadBytesExt};
16use ctr::Ctr64BE;
17use digest::crypto_common::KeyIvInit;
18use rand_08::{thread_rng as rng, Rng};
19use reth_network_peers::{id2pk, pk2id};
20use secp256k1::{
21    ecdsa::{RecoverableSignature, RecoveryId},
22    PublicKey, SecretKey, SECP256K1,
23};
24use sha2::Sha256;
25
26const PROTOCOL_VERSION: usize = 4;
27
28/// Computes the shared secret with ECDH and strips the y coordinate after computing the shared
29/// secret.
30///
31/// This uses the given remote public key and local (ephemeral) secret key to [compute a shared
32/// secp256k1 point](secp256k1::ecdh::shared_secret_point) and slices off the y coordinate from the
33/// returned pair, returning only the bytes of the x coordinate as a [`B256`].
34fn ecdh_x(public_key: &PublicKey, secret_key: &SecretKey) -> B256 {
35    B256::from_slice(&secp256k1::ecdh::shared_secret_point(public_key, secret_key)[..32])
36}
37
38/// This is the NIST SP 800-56A Concatenation Key Derivation Function (KDF) using SHA-256.
39///
40/// Internally this uses [`concat_kdf::derive_key_into`] to derive a key into the given `dest`
41/// slice.
42///
43/// # Panics
44/// * If the `dest` is empty
45/// * If the `dest` len is greater than or equal to the hash output len * the max counter value. In
46///   this case, the hash output len is 32 bytes, and the max counter value is 2^32 - 1. So the dest
47///   cannot have a len greater than 32 * 2^32 - 1.
48fn kdf(secret: B256, s1: &[u8], dest: &mut [u8]) {
49    concat_kdf::derive_key_into::<Sha256>(secret.as_slice(), s1, dest).unwrap();
50}
51
52pub struct ECIES {
53    secret_key: SecretKey,
54    public_key: PublicKey,
55    remote_public_key: Option<PublicKey>,
56
57    pub(crate) remote_id: Option<PeerId>,
58
59    ephemeral_secret_key: SecretKey,
60    ephemeral_public_key: PublicKey,
61    ephemeral_shared_secret: Option<B256>,
62    remote_ephemeral_public_key: Option<PublicKey>,
63
64    nonce: B256,
65    remote_nonce: Option<B256>,
66
67    ingress_aes: Option<Ctr64BE<Aes256>>,
68    egress_aes: Option<Ctr64BE<Aes256>>,
69    ingress_mac: Option<MAC>,
70    egress_mac: Option<MAC>,
71
72    init_msg: Option<Bytes>,
73    remote_init_msg: Option<Bytes>,
74
75    body_size: Option<usize>,
76}
77
78impl core::fmt::Debug for ECIES {
79    #[inline]
80    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
81        f.debug_struct("ECIES")
82            .field("public_key", &self.public_key)
83            .field("remote_public_key", &self.remote_public_key)
84            .field("remote_id", &self.remote_id)
85            .field("ephemeral_public_key", &self.ephemeral_public_key)
86            .field("ephemeral_shared_secret", &self.ephemeral_shared_secret)
87            .field("remote_ephemeral_public_key", &self.remote_ephemeral_public_key)
88            .field("nonce", &self.nonce)
89            .field("remote_nonce", &self.remote_nonce)
90            .field("ingress_mac", &self.ingress_mac)
91            .field("egress_mac", &self.egress_mac)
92            .field("init_msg", &self.init_msg)
93            .field("remote_init_msg", &self.remote_init_msg)
94            .field("body_size", &self.body_size)
95            .finish()
96    }
97}
98
99fn split_at_mut<T>(arr: &mut [T], idx: usize) -> Result<(&mut [T], &mut [T]), ECIESError> {
100    if idx > arr.len() {
101        return Err(ECIESErrorImpl::OutOfBounds { idx, len: arr.len() }.into())
102    }
103    Ok(arr.split_at_mut(idx))
104}
105
106/// A parsed `RLPx` encrypted message
107///
108/// From the devp2p spec, this should help perform the following operations:
109///
110/// For Bob to decrypt the message `R || iv || c || d`, he derives the shared secret `S = Px` where
111/// `(Px, Py) = kB * R` as well as the encryption and authentication keys `kE || kM = KDF(S, 32)`.
112///
113/// Bob verifies the authenticity of the message by checking whether `d == MAC(sha256(kM), iv ||
114/// c)` then obtains the plaintext as `m = AES(kE, iv || c)`.
115#[derive(Debug)]
116pub struct EncryptedMessage<'a> {
117    /// The auth data, used when checking the `tag` with HMAC-SHA256.
118    ///
119    /// This is not mentioned in the `RLPx` spec, but included in implementations.
120    ///
121    /// See source comments of [`Self::check_integrity`] for more information.
122    auth_data: [u8; 2],
123    /// The remote secp256k1 public key
124    public_key: PublicKey,
125    /// The IV, for use in AES during decryption, in the tag check
126    iv: B128,
127    /// The encrypted data
128    encrypted_data: &'a mut [u8],
129    /// The message tag
130    tag: B256,
131}
132
133impl<'a> EncryptedMessage<'a> {
134    /// Parse the given `data` into an [`EncryptedMessage`].
135    ///
136    /// If the data is not long enough to contain the expected fields, this returns an error.
137    pub fn parse(data: &mut [u8]) -> Result<EncryptedMessage<'_>, ECIESError> {
138        // Auth data is 2 bytes, public key is 65 bytes
139        if data.len() < 65 + 2 {
140            return Err(ECIESErrorImpl::EncryptedDataTooSmall.into())
141        }
142        let (auth_data, encrypted) = data.split_at_mut(2);
143
144        // convert the auth data to a fixed size array
145        //
146        // NOTE: this will not panic because we've already checked that the data is long enough
147        let auth_data = auth_data.try_into().unwrap();
148
149        let (pubkey_bytes, encrypted) = encrypted.split_at_mut(65);
150        let public_key = PublicKey::from_slice(pubkey_bytes)?;
151
152        // return an error if the encrypted len is currently less than 32
153        let tag_index =
154            encrypted.len().checked_sub(32).ok_or(ECIESErrorImpl::EncryptedDataTooSmall)?;
155
156        // NOTE: we've already checked that the encrypted data is long enough to contain the
157        // encrypted data and tag
158        let (data_iv, tag_bytes) = encrypted.split_at_mut(tag_index);
159
160        // NOTE: this will not panic because we are splitting at length minus 32 bytes, which
161        // causes tag_bytes to be 32 bytes long
162        let tag = B256::from_slice(tag_bytes);
163
164        // now we can check if the encrypted data is long enough to contain the IV
165        if data_iv.len() < 16 {
166            return Err(ECIESErrorImpl::EncryptedDataTooSmall.into())
167        }
168        let (iv, encrypted_data) = data_iv.split_at_mut(16);
169
170        // NOTE: this will not panic because we are splitting at 16 bytes
171        let iv = B128::from_slice(iv);
172
173        Ok(EncryptedMessage { auth_data, public_key, iv, encrypted_data, tag })
174    }
175
176    /// Use the given secret and this encrypted message to derive the shared secret, and use the
177    /// shared secret to derive the mac and encryption keys.
178    pub fn derive_keys(&self, secret_key: &SecretKey) -> RLPxSymmetricKeys {
179        // perform ECDH to get the shared secret, using the remote public key from the message and
180        // the given secret key
181        let x = ecdh_x(&self.public_key, secret_key);
182        let mut key = [0u8; 32];
183
184        // The RLPx spec describes the key derivation process as:
185        //
186        // kE || kM = KDF(S, 32)
187        //
188        // where kE is the encryption key, and kM is used to determine the MAC key (see below)
189        //
190        // NOTE: The RLPx spec does not define an `OtherInfo` parameter, and this is unused in
191        // other implementations, so we use an empty slice.
192        kdf(x, &[], &mut key);
193
194        let enc_key = B128::from_slice(&key[..16]);
195
196        // The MAC tag check operation described is:
197        //
198        // d == MAC(sha256(kM), iv || c)
199        //
200        // where kM is the result of the above KDF, iv is the IV, and c is the encrypted data.
201        // Because the hash of kM is ultimately used as the mac key, we perform that hashing here.
202        let mac_key = sha256(&key[16..32]);
203
204        RLPxSymmetricKeys { enc_key, mac_key }
205    }
206
207    /// Use the given ECIES keys to check the message integrity using the contained tag.
208    pub fn check_integrity(&self, keys: &RLPxSymmetricKeys) -> Result<(), ECIESError> {
209        // The MAC tag check operation described is:
210        //
211        // d == MAC(sha256(kM), iv || c)
212        //
213        // NOTE: The RLPx spec does not show here that the `auth_data` is required for checking the
214        // tag.
215        //
216        // Geth refers to SEC 1's definition of ECIES:
217        //
218        // Encrypt encrypts a message using ECIES as specified in SEC 1, section 5.1.
219        //
220        // s1 and s2 contain shared information that is not part of the resulting
221        // ciphertext. s1 is fed into key derivation, s2 is fed into the MAC. If the
222        // shared information parameters aren't being used, they should be nil.
223        //
224        // ```
225        // prefix := make([]byte, 2)
226        // binary.BigEndian.PutUint16(prefix, uint16(len(h.wbuf.data)+eciesOverhead))
227        //
228        // enc, err := ecies.Encrypt(rand.Reader, h.remote, h.wbuf.data, nil, prefix)
229        // ```
230        let check_tag = hmac_sha256(
231            keys.mac_key.as_ref(),
232            &[self.iv.as_slice(), self.encrypted_data],
233            &self.auth_data,
234        );
235        if check_tag != self.tag {
236            return Err(ECIESErrorImpl::TagCheckDecryptFailed.into())
237        }
238
239        Ok(())
240    }
241
242    /// Use the given ECIES keys to decrypt the contained encrypted data, consuming the message and
243    /// returning the decrypted data.
244    pub fn decrypt(self, keys: &RLPxSymmetricKeys) -> &'a mut [u8] {
245        let Self { iv, encrypted_data, .. } = self;
246
247        // rename for clarity once it's decrypted
248        let decrypted_data = encrypted_data;
249
250        let mut decryptor = Ctr64BE::<Aes128>::new((&keys.enc_key.0).into(), (&*iv).into());
251        decryptor.apply_keystream(decrypted_data);
252        decrypted_data
253    }
254
255    /// Use the given ECIES keys to check the integrity of the message, returning an error if the
256    /// tag check fails, and then decrypt the message, returning the decrypted data.
257    pub fn check_and_decrypt(self, keys: RLPxSymmetricKeys) -> Result<&'a mut [u8], ECIESError> {
258        self.check_integrity(&keys)?;
259        Ok(self.decrypt(&keys))
260    }
261}
262
263/// The symmetric keys derived from an ECIES message.
264#[derive(Debug)]
265pub struct RLPxSymmetricKeys {
266    /// The key used for decryption, specifically with AES-128 in CTR mode, using a 64-bit big
267    /// endian counter.
268    pub enc_key: B128,
269
270    /// The key used for verifying message integrity, specifically with the NIST SP 800-56A Concat
271    /// KDF.
272    pub mac_key: B256,
273}
274
275impl ECIES {
276    /// Create a new client with the given static secret key, remote peer id, nonce, and ephemeral
277    /// secret key.
278    fn new_static_client(
279        secret_key: SecretKey,
280        remote_id: PeerId,
281        nonce: B256,
282        ephemeral_secret_key: SecretKey,
283    ) -> Result<Self, ECIESError> {
284        let public_key = PublicKey::from_secret_key(SECP256K1, &secret_key);
285        let remote_public_key = id2pk(remote_id)?;
286        let ephemeral_public_key = PublicKey::from_secret_key(SECP256K1, &ephemeral_secret_key);
287
288        Ok(Self {
289            secret_key,
290            public_key,
291            ephemeral_secret_key,
292            ephemeral_public_key,
293            nonce,
294
295            remote_public_key: Some(remote_public_key),
296            remote_ephemeral_public_key: None,
297            remote_nonce: None,
298            ephemeral_shared_secret: None,
299            init_msg: None,
300            remote_init_msg: None,
301
302            remote_id: Some(remote_id),
303
304            body_size: None,
305            egress_aes: None,
306            ingress_aes: None,
307            egress_mac: None,
308            ingress_mac: None,
309        })
310    }
311
312    /// Create a new ECIES client with the given static secret key and remote peer ID.
313    pub fn new_client(secret_key: SecretKey, remote_id: PeerId) -> Result<Self, ECIESError> {
314        let mut rng = rng();
315        let nonce = B256::random();
316        let ephemeral_secret_key = SecretKey::new(&mut rng);
317        Self::new_static_client(secret_key, remote_id, nonce, ephemeral_secret_key)
318    }
319
320    /// Create a new server with the given static secret key, remote peer id, and ephemeral secret
321    /// key.
322    pub fn new_static_server(
323        secret_key: SecretKey,
324        nonce: B256,
325        ephemeral_secret_key: SecretKey,
326    ) -> Result<Self, ECIESError> {
327        let public_key = PublicKey::from_secret_key(SECP256K1, &secret_key);
328        let ephemeral_public_key = PublicKey::from_secret_key(SECP256K1, &ephemeral_secret_key);
329
330        Ok(Self {
331            secret_key,
332            public_key,
333            ephemeral_secret_key,
334            ephemeral_public_key,
335            nonce,
336
337            remote_public_key: None,
338            remote_ephemeral_public_key: None,
339            remote_nonce: None,
340            ephemeral_shared_secret: None,
341            init_msg: None,
342            remote_init_msg: None,
343
344            remote_id: None,
345
346            body_size: None,
347            egress_aes: None,
348            ingress_aes: None,
349            egress_mac: None,
350            ingress_mac: None,
351        })
352    }
353
354    /// Create a new ECIES server with the given static secret key.
355    pub fn new_server(secret_key: SecretKey) -> Result<Self, ECIESError> {
356        let mut rng = rng();
357        let nonce = B256::random();
358        let ephemeral_secret_key = SecretKey::new(&mut rng);
359        Self::new_static_server(secret_key, nonce, ephemeral_secret_key)
360    }
361
362    /// Return the contained remote peer ID.
363    pub const fn remote_id(&self) -> PeerId {
364        self.remote_id.unwrap()
365    }
366
367    fn encrypt_message(&self, data: &[u8], out: &mut BytesMut) {
368        let mut rng = rng();
369
370        out.reserve(secp256k1::constants::UNCOMPRESSED_PUBLIC_KEY_SIZE + 16 + data.len() + 32);
371
372        let secret_key = SecretKey::new(&mut rng);
373        out.extend_from_slice(
374            &PublicKey::from_secret_key(SECP256K1, &secret_key).serialize_uncompressed(),
375        );
376
377        let x = ecdh_x(&self.remote_public_key.unwrap(), &secret_key);
378        let mut key = [0u8; 32];
379        kdf(x, &[], &mut key);
380
381        let enc_key = B128::from_slice(&key[..16]);
382        let mac_key = sha256(&key[16..32]);
383
384        let iv = B128::random();
385        let mut encryptor = Ctr64BE::<Aes128>::new((&enc_key.0).into(), (&iv.0).into());
386
387        let mut encrypted = data.to_vec();
388        encryptor.apply_keystream(&mut encrypted);
389
390        let total_size: u16 = u16::try_from(65 + 16 + data.len() + 32).unwrap();
391
392        let tag =
393            hmac_sha256(mac_key.as_ref(), &[iv.as_slice(), &encrypted], &total_size.to_be_bytes());
394
395        out.extend_from_slice(iv.as_slice());
396        out.extend_from_slice(&encrypted);
397        out.extend_from_slice(tag.as_ref());
398    }
399
400    fn decrypt_message<'a>(&self, data: &'a mut [u8]) -> Result<&'a mut [u8], ECIESError> {
401        // parse the encrypted message from bytes
402        let encrypted_message = EncryptedMessage::parse(data)?;
403
404        // derive keys from the secret key and the encrypted message
405        let keys = encrypted_message.derive_keys(&self.secret_key);
406
407        // check message integrity and decrypt the message
408        encrypted_message.check_and_decrypt(keys)
409    }
410
411    fn create_auth_unencrypted(&self) -> BytesMut {
412        let x = ecdh_x(&self.remote_public_key.unwrap(), &self.secret_key);
413        let msg = x ^ self.nonce;
414        let (rec_id, sig) = SECP256K1
415            .sign_ecdsa_recoverable(
416                &secp256k1::Message::from_digest(msg.0),
417                &self.ephemeral_secret_key,
418            )
419            .serialize_compact();
420
421        let mut sig_bytes = [0u8; 65];
422        sig_bytes[..64].copy_from_slice(&sig);
423        sig_bytes[64] = i32::from(rec_id) as u8;
424
425        let id = pk2id(&self.public_key);
426
427        #[derive(RlpEncodable)]
428        struct S<'a> {
429            sig_bytes: &'a [u8; 65],
430            id: &'a PeerId,
431            nonce: &'a B256,
432            protocol_version: u8,
433        }
434
435        let mut out = BytesMut::new();
436        S {
437            sig_bytes: &sig_bytes,
438            id: &id,
439            nonce: &self.nonce,
440            protocol_version: PROTOCOL_VERSION as u8,
441        }
442        .encode(&mut out);
443
444        out.resize(out.len() + rng().gen_range(100..=300), 0);
445        out
446    }
447
448    #[cfg(test)]
449    fn create_auth(&mut self) -> BytesMut {
450        let mut buf = BytesMut::new();
451        self.write_auth(&mut buf);
452        buf
453    }
454
455    /// Write an auth message to the given buffer.
456    pub fn write_auth(&mut self, buf: &mut BytesMut) {
457        let unencrypted = self.create_auth_unencrypted();
458
459        let mut out = buf.split_off(buf.len());
460        out.put_u16(0);
461
462        let mut encrypted = out.split_off(out.len());
463        self.encrypt_message(&unencrypted, &mut encrypted);
464
465        let len_bytes = u16::try_from(encrypted.len()).unwrap().to_be_bytes();
466        out[..len_bytes.len()].copy_from_slice(&len_bytes);
467
468        out.unsplit(encrypted);
469
470        self.init_msg = Some(Bytes::copy_from_slice(&out));
471
472        buf.unsplit(out);
473    }
474
475    fn parse_auth_unencrypted(&mut self, data: &[u8]) -> Result<(), ECIESError> {
476        let mut data = Rlp::new(data)?;
477
478        let sigdata = data.get_next::<[u8; 65]>()?.ok_or(ECIESErrorImpl::InvalidAuthData)?;
479        let signature = RecoverableSignature::from_compact(
480            &sigdata[..64],
481            RecoveryId::try_from(sigdata[64] as i32)?,
482        )?;
483        let remote_id = data.get_next()?.ok_or(ECIESErrorImpl::InvalidAuthData)?;
484        self.remote_id = Some(remote_id);
485        self.remote_public_key = Some(id2pk(remote_id)?);
486        self.remote_nonce = Some(data.get_next()?.ok_or(ECIESErrorImpl::InvalidAuthData)?);
487
488        let x = ecdh_x(&self.remote_public_key.unwrap(), &self.secret_key);
489        self.remote_ephemeral_public_key = Some(SECP256K1.recover_ecdsa(
490            &secp256k1::Message::from_digest((x ^ self.remote_nonce.unwrap()).0),
491            &signature,
492        )?);
493        self.ephemeral_shared_secret =
494            Some(ecdh_x(&self.remote_ephemeral_public_key.unwrap(), &self.ephemeral_secret_key));
495
496        Ok(())
497    }
498
499    /// Read and verify an auth message from the input data.
500    #[tracing::instrument(level = "trace", skip_all)]
501    pub fn read_auth(&mut self, data: &mut [u8]) -> Result<(), ECIESError> {
502        self.remote_init_msg = Some(Bytes::copy_from_slice(data));
503        let unencrypted = self.decrypt_message(data)?;
504        self.parse_auth_unencrypted(unencrypted)
505    }
506
507    /// Create an `ack` message using the internal nonce, local ephemeral public key, and `RLPx`
508    /// ECIES protocol version.
509    fn create_ack_unencrypted(&self) -> impl AsRef<[u8]> {
510        #[derive(RlpEncodable, RlpMaxEncodedLen)]
511        struct S {
512            id: PeerId,
513            nonce: B256,
514            protocol_version: u8,
515        }
516
517        alloy_rlp::encode_fixed_size(&S {
518            id: pk2id(&self.ephemeral_public_key),
519            nonce: self.nonce,
520            protocol_version: PROTOCOL_VERSION as u8,
521        })
522    }
523
524    #[cfg(test)]
525    pub fn create_ack(&mut self) -> BytesMut {
526        let mut buf = BytesMut::new();
527        self.write_ack(&mut buf);
528        buf
529    }
530
531    /// Write an `ack` message to the given buffer.
532    pub fn write_ack(&mut self, out: &mut BytesMut) {
533        let mut buf = out.split_off(out.len());
534
535        // reserve space for length
536        buf.put_u16(0);
537
538        // encrypt and append
539        let mut encrypted = buf.split_off(buf.len());
540        self.encrypt_message(self.create_ack_unencrypted().as_ref(), &mut encrypted);
541        let len_bytes = u16::try_from(encrypted.len()).unwrap().to_be_bytes();
542        buf.unsplit(encrypted);
543
544        // write length
545        buf[..len_bytes.len()].copy_from_slice(&len_bytes[..]);
546
547        self.init_msg = Some(buf.clone().freeze());
548        out.unsplit(buf);
549
550        self.setup_frame(true);
551    }
552
553    /// Parse the incoming `ack` message from the given `data` bytes, which are assumed to be
554    /// unencrypted. This parses the remote ephemeral pubkey and nonce from the message, and uses
555    /// ECDH to compute the shared secret. The shared secret is the x coordinate of the point
556    /// returned by ECDH.
557    ///
558    /// This sets the `remote_ephemeral_public_key` and `remote_nonce`, and
559    /// `ephemeral_shared_secret` fields in the ECIES state.
560    fn parse_ack_unencrypted(&mut self, data: &[u8]) -> Result<(), ECIESError> {
561        let mut data = Rlp::new(data)?;
562        self.remote_ephemeral_public_key =
563            Some(id2pk(data.get_next()?.ok_or(ECIESErrorImpl::InvalidAckData)?)?);
564        self.remote_nonce = Some(data.get_next()?.ok_or(ECIESErrorImpl::InvalidAckData)?);
565
566        self.ephemeral_shared_secret =
567            Some(ecdh_x(&self.remote_ephemeral_public_key.unwrap(), &self.ephemeral_secret_key));
568        Ok(())
569    }
570
571    /// Read and verify an ack message from the input data.
572    #[tracing::instrument(level = "trace", skip_all)]
573    pub fn read_ack(&mut self, data: &mut [u8]) -> Result<(), ECIESError> {
574        self.remote_init_msg = Some(Bytes::copy_from_slice(data));
575        let unencrypted = self.decrypt_message(data)?;
576        self.parse_ack_unencrypted(unencrypted)?;
577        self.setup_frame(false);
578        Ok(())
579    }
580
581    fn setup_frame(&mut self, incoming: bool) {
582        let mut hasher = Keccak256::new();
583        for el in &if incoming {
584            [self.nonce, self.remote_nonce.unwrap()]
585        } else {
586            [self.remote_nonce.unwrap(), self.nonce]
587        } {
588            hasher.update(el);
589        }
590        let h_nonce = B256::from(hasher.finalize().as_ref());
591
592        let iv = B128::default();
593        let shared_secret: B256 = {
594            let mut hasher = Keccak256::new();
595            hasher.update(self.ephemeral_shared_secret.unwrap().0.as_ref());
596            hasher.update(h_nonce.0.as_ref());
597            B256::from(hasher.finalize().as_ref())
598        };
599
600        let aes_secret: B256 = {
601            let mut hasher = Keccak256::new();
602            hasher.update(self.ephemeral_shared_secret.unwrap().0.as_ref());
603            hasher.update(shared_secret.0.as_ref());
604            B256::from(hasher.finalize().as_ref())
605        };
606        self.ingress_aes = Some(Ctr64BE::<Aes256>::new((&aes_secret.0).into(), (&iv.0).into()));
607        self.egress_aes = Some(Ctr64BE::<Aes256>::new((&aes_secret.0).into(), (&iv.0).into()));
608
609        let mac_secret: B256 = {
610            let mut hasher = Keccak256::new();
611            hasher.update(self.ephemeral_shared_secret.unwrap().0.as_ref());
612            hasher.update(aes_secret.0.as_ref());
613            B256::from(hasher.finalize().as_ref())
614        };
615        self.ingress_mac = Some(MAC::new(mac_secret));
616        self.ingress_mac.as_mut().unwrap().update((mac_secret ^ self.nonce).as_ref());
617        self.ingress_mac.as_mut().unwrap().update(self.remote_init_msg.as_ref().unwrap());
618        self.egress_mac = Some(MAC::new(mac_secret));
619        self.egress_mac
620            .as_mut()
621            .unwrap()
622            .update((mac_secret ^ self.remote_nonce.unwrap()).as_ref());
623        self.egress_mac.as_mut().unwrap().update(self.init_msg.as_ref().unwrap());
624    }
625
626    #[cfg(test)]
627    fn create_header(&mut self, size: usize) -> BytesMut {
628        let mut out = BytesMut::new();
629        self.write_header(&mut out, size);
630        out
631    }
632
633    pub fn write_header(&mut self, out: &mut BytesMut, size: usize) {
634        let mut buf = [0u8; 8];
635        BigEndian::write_uint(&mut buf, size as u64, 3);
636        let mut header = [0u8; 16];
637        header[..3].copy_from_slice(&buf[..3]);
638        header[3..6].copy_from_slice(&[194, 128, 128]);
639
640        self.egress_aes.as_mut().unwrap().apply_keystream(&mut header);
641        self.egress_mac.as_mut().unwrap().update_header(&header);
642        let tag = self.egress_mac.as_mut().unwrap().digest();
643
644        out.reserve(Self::header_len());
645        out.extend_from_slice(&header[..]);
646        out.extend_from_slice(tag.as_slice());
647    }
648
649    /// Reads the `RLPx` header from the slice, setting up the MAC and AES, returning the body
650    /// size contained in the header.
651    pub fn read_header(&mut self, data: &mut [u8]) -> Result<usize, ECIESError> {
652        // If the data is not large enough to fit the header and mac bytes, return an error
653        //
654        // The header is 16 bytes, and the mac is 16 bytes, so the data must be at least 32 bytes
655        if data.len() < 32 {
656            return Err(ECIESErrorImpl::InvalidHeader.into())
657        }
658
659        let (header_bytes, mac_bytes) = split_at_mut(data, 16)?;
660        let header: &mut [u8; 16] = header_bytes.try_into().unwrap();
661        let mac = B128::from_slice(&mac_bytes[..16]);
662
663        self.ingress_mac.as_mut().unwrap().update_header(header);
664        let check_mac = self.ingress_mac.as_mut().unwrap().digest();
665        if check_mac != mac {
666            return Err(ECIESErrorImpl::TagCheckHeaderFailed.into())
667        }
668
669        self.ingress_aes.as_mut().unwrap().apply_keystream(header);
670        if header.len() < 3 {
671            return Err(ECIESErrorImpl::InvalidHeader.into())
672        }
673
674        let body_size = usize::try_from((&header[..]).read_uint::<BigEndian>(3)?)?;
675
676        self.body_size = Some(body_size);
677
678        Ok(body_size)
679    }
680
681    pub const fn header_len() -> usize {
682        32
683    }
684
685    pub const fn body_len(&self) -> usize {
686        let len = self.body_size.unwrap();
687        Self::align_16(len) + 16
688    }
689
690    #[cfg(test)]
691    fn create_body(&mut self, data: &[u8]) -> BytesMut {
692        let mut out = BytesMut::new();
693        self.write_body(&mut out, data);
694        out
695    }
696
697    pub fn write_body(&mut self, out: &mut BytesMut, data: &[u8]) {
698        let len = Self::align_16(data.len());
699        let old_len = out.len();
700        out.resize(old_len + len, 0);
701
702        let encrypted = &mut out[old_len..old_len + len];
703        encrypted[..data.len()].copy_from_slice(data);
704
705        self.egress_aes.as_mut().unwrap().apply_keystream(encrypted);
706        self.egress_mac.as_mut().unwrap().update_body(encrypted);
707        let tag = self.egress_mac.as_mut().unwrap().digest();
708
709        out.extend_from_slice(tag.as_slice());
710    }
711
712    pub fn read_body<'a>(&mut self, data: &'a mut [u8]) -> Result<&'a mut [u8], ECIESError> {
713        // error if the data is too small to contain the tag
714        // TODO: create a custom type similar to EncryptedMessage for parsing, checking MACs, and
715        // decrypting the body
716        let mac_index = data.len().checked_sub(16).ok_or(ECIESErrorImpl::EncryptedDataTooSmall)?;
717        let (body, mac_bytes) = split_at_mut(data, mac_index)?;
718        let mac = B128::from_slice(mac_bytes);
719        self.ingress_mac.as_mut().unwrap().update_body(body);
720        let check_mac = self.ingress_mac.as_mut().unwrap().digest();
721        if check_mac != mac {
722            return Err(ECIESErrorImpl::TagCheckBodyFailed.into())
723        }
724
725        let size = self.body_size.unwrap();
726        self.body_size = None;
727        let ret = body;
728        self.ingress_aes.as_mut().unwrap().apply_keystream(ret);
729        Ok(split_at_mut(ret, size)?.0)
730    }
731
732    /// Returns `num` aligned to 16.
733    ///
734    /// `<https://stackoverflow.com/questions/14561402/how-is-this-size-alignment-working>`
735    #[inline]
736    const fn align_16(num: usize) -> usize {
737        (num + (16 - 1)) & !(16 - 1)
738    }
739}
740
741#[cfg(test)]
742mod tests {
743    use super::*;
744    use alloy_primitives::{b256, hex};
745
746    #[test]
747    fn ecdh() {
748        let our_secret_key = SecretKey::from_slice(&hex!(
749            "202a36e24c3eb39513335ec99a7619bad0e7dc68d69401b016253c7d26dc92f8"
750        ))
751        .unwrap();
752        let remote_public_key = id2pk(hex!("d860a01f9722d78051619d1e2351aba3f43f943f6f00718d1b9baa4101932a1f5011f16bb2b1bb35db20d6fe28fa0bf09636d26a87d31de9ec6203eeedb1f666").into()).unwrap();
753
754        assert_eq!(
755            ecdh_x(&remote_public_key, &our_secret_key),
756            hex!("821ce7e01ea11b111a52b2dafae8a3031a372d83bdf1a78109fa0783c2b9d5d3")
757        )
758    }
759
760    #[test]
761    fn communicate() {
762        let mut rng = rng();
763        let server_secret_key = SecretKey::new(&mut rng);
764        let server_public_key = PublicKey::from_secret_key(SECP256K1, &server_secret_key);
765        let client_secret_key = SecretKey::new(&mut rng);
766
767        let mut server_ecies = ECIES::new_server(server_secret_key).unwrap();
768        let mut client_ecies =
769            ECIES::new_client(client_secret_key, pk2id(&server_public_key)).unwrap();
770
771        // Handshake
772        let mut auth = client_ecies.create_auth();
773        server_ecies.read_auth(&mut auth).unwrap();
774        let mut ack = server_ecies.create_ack();
775        client_ecies.read_ack(&mut ack).unwrap();
776        let mut ack = client_ecies.create_ack();
777        server_ecies.read_ack(&mut ack).unwrap();
778
779        let server_to_client_data = [0u8, 1u8, 2u8, 3u8, 4u8];
780        let client_to_server_data = [5u8, 6u8, 7u8];
781
782        // Test server to client 1
783        let mut header = server_ecies.create_header(server_to_client_data.len());
784        assert_eq!(header.len(), ECIES::header_len());
785        client_ecies.read_header(&mut header).unwrap();
786        let mut body = server_ecies.create_body(&server_to_client_data);
787        assert_eq!(body.len(), client_ecies.body_len());
788        let ret = client_ecies.read_body(&mut body).unwrap();
789        assert_eq!(ret, server_to_client_data);
790
791        // Test client to server 1
792        server_ecies
793            .read_header(&mut client_ecies.create_header(client_to_server_data.len()))
794            .unwrap();
795        let mut b = client_ecies.create_body(&client_to_server_data);
796        let ret = server_ecies.read_body(&mut b).unwrap();
797        assert_eq!(ret, client_to_server_data);
798
799        // Test server to client 2
800        client_ecies
801            .read_header(&mut server_ecies.create_header(server_to_client_data.len()))
802            .unwrap();
803        let mut b = server_ecies.create_body(&server_to_client_data);
804        let ret = client_ecies.read_body(&mut b).unwrap();
805        assert_eq!(ret, server_to_client_data);
806
807        // Test server to client 3
808        client_ecies
809            .read_header(&mut server_ecies.create_header(server_to_client_data.len()))
810            .unwrap();
811        let mut b = server_ecies.create_body(&server_to_client_data);
812        let ret = client_ecies.read_body(&mut b).unwrap();
813        assert_eq!(ret, server_to_client_data);
814
815        // Test client to server 2
816        server_ecies
817            .read_header(&mut client_ecies.create_header(client_to_server_data.len()))
818            .unwrap();
819        let mut b = client_ecies.create_body(&client_to_server_data);
820        let ret = server_ecies.read_body(&mut b).unwrap();
821        assert_eq!(ret, client_to_server_data);
822
823        // Test client to server 3
824        server_ecies
825            .read_header(&mut client_ecies.create_header(client_to_server_data.len()))
826            .unwrap();
827        let mut b = client_ecies.create_body(&client_to_server_data);
828        let ret = server_ecies.read_body(&mut b).unwrap();
829        assert_eq!(ret, client_to_server_data);
830    }
831
832    fn eip8_test_server_key() -> SecretKey {
833        SecretKey::from_slice(&hex!(
834            "b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291"
835        ))
836        .unwrap()
837    }
838
839    fn eip8_test_client() -> ECIES {
840        let client_static_key = SecretKey::from_slice(&hex!(
841            "49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee"
842        ))
843        .unwrap();
844
845        let client_ephemeral_key = SecretKey::from_slice(&hex!(
846            "869d6ecf5211f1cc60418a13b9d870b22959d0c16f02bec714c960dd2298a32d"
847        ))
848        .unwrap();
849
850        let client_nonce =
851            b256!("0x7e968bba13b6c50e2c4cd7f241cc0d64d1ac25c7f5952df231ac6a2bda8ee5d6");
852
853        let server_id = pk2id(&PublicKey::from_secret_key(SECP256K1, &eip8_test_server_key()));
854
855        ECIES::new_static_client(client_static_key, server_id, client_nonce, client_ephemeral_key)
856            .unwrap()
857    }
858
859    fn eip8_test_server() -> ECIES {
860        let server_ephemeral_key = SecretKey::from_slice(&hex!(
861            "e238eb8e04fee6511ab04c6dd3c89ce097b11f25d584863ac2b6d5b35b1847e4"
862        ))
863        .unwrap();
864
865        let server_nonce =
866            b256!("0x559aead08264d5795d3909718cdd05abd49572e84fe55590eef31a88a08fdffd");
867
868        ECIES::new_static_server(eip8_test_server_key(), server_nonce, server_ephemeral_key)
869            .unwrap()
870    }
871
872    #[test]
873    /// Test vectors from <https://eips.ethereum.org/EIPS/eip-8>
874    fn eip8_test() {
875        // EIP-8 format with version 4 and no additional list elements
876        let auth2 = hex!(
877            "
878        01b304ab7578555167be8154d5cc456f567d5ba302662433674222360f08d5f1534499d3678b513b
879        0fca474f3a514b18e75683032eb63fccb16c156dc6eb2c0b1593f0d84ac74f6e475f1b8d56116b84
880        9634a8c458705bf83a626ea0384d4d7341aae591fae42ce6bd5c850bfe0b999a694a49bbbaf3ef6c
881        da61110601d3b4c02ab6c30437257a6e0117792631a4b47c1d52fc0f8f89caadeb7d02770bf999cc
882        147d2df3b62e1ffb2c9d8c125a3984865356266bca11ce7d3a688663a51d82defaa8aad69da39ab6
883        d5470e81ec5f2a7a47fb865ff7cca21516f9299a07b1bc63ba56c7a1a892112841ca44b6e0034dee
884        70c9adabc15d76a54f443593fafdc3b27af8059703f88928e199cb122362a4b35f62386da7caad09
885        c001edaeb5f8a06d2b26fb6cb93c52a9fca51853b68193916982358fe1e5369e249875bb8d0d0ec3
886        6f917bc5e1eafd5896d46bd61ff23f1a863a8a8dcd54c7b109b771c8e61ec9c8908c733c0263440e
887        2aa067241aaa433f0bb053c7b31a838504b148f570c0ad62837129e547678c5190341e4f1693956c
888        3bf7678318e2d5b5340c9e488eefea198576344afbdf66db5f51204a6961a63ce072c8926c
889        "
890        );
891
892        // EIP-8 format with version 56 and 3 additional list elements (sent from A to B)
893        let auth3 = hex!(
894            "
895        01b8044c6c312173685d1edd268aa95e1d495474c6959bcdd10067ba4c9013df9e40ff45f5bfd6f7
896        2471f93a91b493f8e00abc4b80f682973de715d77ba3a005a242eb859f9a211d93a347fa64b597bf
897        280a6b88e26299cf263b01b8dfdb712278464fd1c25840b995e84d367d743f66c0e54a586725b7bb
898        f12acca27170ae3283c1073adda4b6d79f27656993aefccf16e0d0409fe07db2dc398a1b7e8ee93b
899        cd181485fd332f381d6a050fba4c7641a5112ac1b0b61168d20f01b479e19adf7fdbfa0905f63352
900        bfc7e23cf3357657455119d879c78d3cf8c8c06375f3f7d4861aa02a122467e069acaf513025ff19
901        6641f6d2810ce493f51bee9c966b15c5043505350392b57645385a18c78f14669cc4d960446c1757
902        1b7c5d725021babbcd786957f3d17089c084907bda22c2b2675b4378b114c601d858802a55345a15
903        116bc61da4193996187ed70d16730e9ae6b3bb8787ebcaea1871d850997ddc08b4f4ea668fbf3740
904        7ac044b55be0908ecb94d4ed172ece66fd31bfdadf2b97a8bc690163ee11f5b575a4b44e36e2bfb2
905        f0fce91676fd64c7773bac6a003f481fddd0bae0a1f31aa27504e2a533af4cef3b623f4791b2cca6
906        d490
907        "
908        );
909
910        // EIP-8 format with version 4 and no additional list elements (sent from B to A)
911        let ack2 = hex!(
912            "
913        01ea0451958701280a56482929d3b0757da8f7fbe5286784beead59d95089c217c9b917788989470
914        b0e330cc6e4fb383c0340ed85fab836ec9fb8a49672712aeabbdfd1e837c1ff4cace34311cd7f4de
915        05d59279e3524ab26ef753a0095637ac88f2b499b9914b5f64e143eae548a1066e14cd2f4bd7f814
916        c4652f11b254f8a2d0191e2f5546fae6055694aed14d906df79ad3b407d94692694e259191cde171
917        ad542fc588fa2b7333313d82a9f887332f1dfc36cea03f831cb9a23fea05b33deb999e85489e645f
918        6aab1872475d488d7bd6c7c120caf28dbfc5d6833888155ed69d34dbdc39c1f299be1057810f34fb
919        e754d021bfca14dc989753d61c413d261934e1a9c67ee060a25eefb54e81a4d14baff922180c395d
920        3f998d70f46f6b58306f969627ae364497e73fc27f6d17ae45a413d322cb8814276be6ddd13b885b
921        201b943213656cde498fa0e9ddc8e0b8f8a53824fbd82254f3e2c17e8eaea009c38b4aa0a3f306e8
922        797db43c25d68e86f262e564086f59a2fc60511c42abfb3057c247a8a8fe4fb3ccbadde17514b7ac
923        8000cdb6a912778426260c47f38919a91f25f4b5ffb455d6aaaf150f7e5529c100ce62d6d92826a7
924        1778d809bdf60232ae21ce8a437eca8223f45ac37f6487452ce626f549b3b5fdee26afd2072e4bc7
925        5833c2464c805246155289f4
926        "
927        );
928
929        // EIP-8 format with version 57 and 3 additional list elements (sent from B to A)
930        let ack3 = hex!(
931            "
932        01f004076e58aae772bb101ab1a8e64e01ee96e64857ce82b1113817c6cdd52c09d26f7b90981cd7
933        ae835aeac72e1573b8a0225dd56d157a010846d888dac7464baf53f2ad4e3d584531fa203658fab0
934        3a06c9fd5e35737e417bc28c1cbf5e5dfc666de7090f69c3b29754725f84f75382891c561040ea1d
935        dc0d8f381ed1b9d0d4ad2a0ec021421d847820d6fa0ba66eaf58175f1b235e851c7e2124069fbc20
936        2888ddb3ac4d56bcbd1b9b7eab59e78f2e2d400905050f4a92dec1c4bdf797b3fc9b2f8e84a482f3
937        d800386186712dae00d5c386ec9387a5e9c9a1aca5a573ca91082c7d68421f388e79127a5177d4f8
938        590237364fd348c9611fa39f78dcdceee3f390f07991b7b47e1daa3ebcb6ccc9607811cb17ce51f1
939        c8c2c5098dbdd28fca547b3f58c01a424ac05f869f49c6a34672ea2cbbc558428aa1fe48bbfd6115
940        8b1b735a65d99f21e70dbc020bfdface9f724a0d1fb5895db971cc81aa7608baa0920abb0a565c9c
941        436e2fd13323428296c86385f2384e408a31e104670df0791d93e743a3a5194ee6b076fb6323ca59
942        3011b7348c16cf58f66b9633906ba54a2ee803187344b394f75dd2e663a57b956cb830dd7a908d4f
943        39a2336a61ef9fda549180d4ccde21514d117b6c6fd07a9102b5efe710a32af4eeacae2cb3b1dec0
944        35b9593b48b9d3ca4c13d245d5f04169b0b1
945        "
946        );
947
948        eip8_test_server().read_auth(&mut auth2.to_vec()).unwrap();
949        eip8_test_server().read_auth(&mut auth3.to_vec()).unwrap();
950
951        let mut test_client = eip8_test_client();
952        let mut test_server = eip8_test_server();
953
954        test_server.read_auth(&mut test_client.create_auth()).unwrap();
955
956        test_client.read_ack(&mut test_server.create_ack()).unwrap();
957
958        test_client.read_ack(&mut ack2.to_vec()).unwrap();
959        test_client.read_ack(&mut ack3.to_vec()).unwrap();
960    }
961
962    #[test]
963    fn kdf_out_of_bounds() {
964        // ensures that the kdf method does not panic if the dest is too small
965        let len_range = 1..65;
966        for len in len_range {
967            let mut dest = vec![1u8; len];
968            kdf(
969                b256!("0x7000000000000000000000000000000000000000000000000000000000000007"),
970                &[0x01, 0x33, 0x70, 0xbe, 0xef],
971                &mut dest,
972            );
973        }
974    }
975}