reth_primitives_traits/
account.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
use alloy_consensus::constants::KECCAK_EMPTY;
use alloy_genesis::GenesisAccount;
use alloy_primitives::{keccak256, Bytes, B256, U256};
use byteorder::{BigEndian, ReadBytesExt};
use bytes::Buf;
use derive_more::Deref;
use reth_codecs::{add_arbitrary_tests, Compact};
use revm_primitives::{AccountInfo, Bytecode as RevmBytecode, BytecodeDecodeError, JumpTable};
use serde::{Deserialize, Serialize};

/// Identifier for [`LegacyRaw`](RevmBytecode::LegacyRaw).
const LEGACY_RAW_BYTECODE_ID: u8 = 0;

/// Identifier for removed bytecode variant.
const REMOVED_BYTECODE_ID: u8 = 1;

/// Identifier for [`LegacyAnalyzed`](RevmBytecode::LegacyAnalyzed).
const LEGACY_ANALYZED_BYTECODE_ID: u8 = 2;

/// Identifier for [`Eof`](RevmBytecode::Eof).
const EOF_BYTECODE_ID: u8 = 3;

/// Identifier for [`Eip7702`](RevmBytecode::Eip7702).
const EIP7702_BYTECODE_ID: u8 = 4;

/// An Ethereum account.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Default, Serialize, Deserialize, Compact)]
#[cfg_attr(any(test, feature = "arbitrary"), derive(arbitrary::Arbitrary))]
#[add_arbitrary_tests(compact)]
pub struct Account {
    /// Account nonce.
    pub nonce: u64,
    /// Account balance.
    pub balance: U256,
    /// Hash of the account's bytecode.
    pub bytecode_hash: Option<B256>,
}

impl Account {
    /// Whether the account has bytecode.
    pub const fn has_bytecode(&self) -> bool {
        self.bytecode_hash.is_some()
    }

    /// After `SpuriousDragon` empty account is defined as account with nonce == 0 && balance == 0
    /// && bytecode = None (or hash is [`KECCAK_EMPTY`]).
    pub fn is_empty(&self) -> bool {
        self.nonce == 0 &&
            self.balance.is_zero() &&
            self.bytecode_hash.map_or(true, |hash| hash == KECCAK_EMPTY)
    }

    /// Returns an account bytecode's hash.
    /// In case of no bytecode, returns [`KECCAK_EMPTY`].
    pub fn get_bytecode_hash(&self) -> B256 {
        self.bytecode_hash.unwrap_or(KECCAK_EMPTY)
    }
}

/// Bytecode for an account.
///
/// A wrapper around [`revm::primitives::Bytecode`][RevmBytecode] with encoding/decoding support.
#[derive(Debug, Clone, Default, PartialEq, Eq, Serialize, Deserialize, Deref)]
pub struct Bytecode(pub RevmBytecode);

impl Bytecode {
    /// Create new bytecode from raw bytes.
    ///
    /// No analysis will be performed.
    ///
    /// # Panics
    ///
    /// Panics if bytecode is EOF and has incorrect format.
    pub fn new_raw(bytes: Bytes) -> Self {
        Self(RevmBytecode::new_raw(bytes))
    }

    /// Creates a new raw [`revm_primitives::Bytecode`].
    ///
    /// Returns an error on incorrect Bytecode format.
    #[inline]
    pub fn new_raw_checked(bytecode: Bytes) -> Result<Self, BytecodeDecodeError> {
        RevmBytecode::new_raw_checked(bytecode).map(Self)
    }
}

impl Compact for Bytecode {
    fn to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        let bytecode = match &self.0 {
            RevmBytecode::LegacyRaw(bytes) => bytes,
            RevmBytecode::LegacyAnalyzed(analyzed) => analyzed.bytecode(),
            RevmBytecode::Eof(eof) => eof.raw(),
            RevmBytecode::Eip7702(eip7702) => eip7702.raw(),
        };
        buf.put_u32(bytecode.len() as u32);
        buf.put_slice(bytecode.as_ref());
        let len = match &self.0 {
            RevmBytecode::LegacyRaw(_) => {
                buf.put_u8(LEGACY_RAW_BYTECODE_ID);
                1
            }
            // [`REMOVED_BYTECODE_ID`] has been removed.
            RevmBytecode::LegacyAnalyzed(analyzed) => {
                buf.put_u8(LEGACY_ANALYZED_BYTECODE_ID);
                buf.put_u64(analyzed.original_len() as u64);
                let map = analyzed.jump_table().as_slice();
                buf.put_slice(map);
                1 + 8 + map.len()
            }
            RevmBytecode::Eof(_) => {
                buf.put_u8(EOF_BYTECODE_ID);
                1
            }
            RevmBytecode::Eip7702(_) => {
                buf.put_u8(EIP7702_BYTECODE_ID);
                1
            }
        };
        len + bytecode.len() + 4
    }

    // # Panics
    //
    // A panic will be triggered if a bytecode variant of 1 or greater than 2 is passed from the
    // database.
    fn from_compact(mut buf: &[u8], _: usize) -> (Self, &[u8]) {
        let len = buf.read_u32::<BigEndian>().expect("could not read bytecode length");
        let bytes = Bytes::from(buf.copy_to_bytes(len as usize));
        let variant = buf.read_u8().expect("could not read bytecode variant");
        let decoded = match variant {
            LEGACY_RAW_BYTECODE_ID => Self(RevmBytecode::new_raw(bytes)),
            REMOVED_BYTECODE_ID => {
                unreachable!("Junk data in database: checked Bytecode variant was removed")
            }
            LEGACY_ANALYZED_BYTECODE_ID => Self(unsafe {
                RevmBytecode::new_analyzed(
                    bytes,
                    buf.read_u64::<BigEndian>().unwrap() as usize,
                    JumpTable::from_slice(buf),
                )
            }),
            EOF_BYTECODE_ID | EIP7702_BYTECODE_ID => {
                // EOF and EIP-7702 bytecode objects will be decoded from the raw bytecode
                Self(RevmBytecode::new_raw(bytes))
            }
            _ => unreachable!("Junk data in database: unknown Bytecode variant"),
        };
        (decoded, &[])
    }
}

impl From<&GenesisAccount> for Account {
    fn from(value: &GenesisAccount) -> Self {
        Self {
            nonce: value.nonce.unwrap_or_default(),
            balance: value.balance,
            bytecode_hash: value.code.as_ref().map(keccak256),
        }
    }
}

impl From<AccountInfo> for Account {
    fn from(revm_acc: AccountInfo) -> Self {
        let code_hash = revm_acc.code_hash;
        Self {
            balance: revm_acc.balance,
            nonce: revm_acc.nonce,
            bytecode_hash: (code_hash != KECCAK_EMPTY).then_some(code_hash),
        }
    }
}

impl From<Account> for AccountInfo {
    fn from(reth_acc: Account) -> Self {
        Self {
            balance: reth_acc.balance,
            nonce: reth_acc.nonce,
            code_hash: reth_acc.bytecode_hash.unwrap_or(KECCAK_EMPTY),
            code: None,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloy_primitives::{hex_literal::hex, B256, U256};
    use revm_primitives::LegacyAnalyzedBytecode;

    #[test]
    fn test_account() {
        let mut buf = vec![];
        let mut acc = Account::default();
        let len = acc.to_compact(&mut buf);
        assert_eq!(len, 2);

        acc.balance = U256::from(2);
        let len = acc.to_compact(&mut buf);
        assert_eq!(len, 3);

        acc.nonce = 2;
        let len = acc.to_compact(&mut buf);
        assert_eq!(len, 4);
    }

    #[test]
    fn test_empty_account() {
        let mut acc = Account { nonce: 0, balance: U256::ZERO, bytecode_hash: None };
        // Nonce 0, balance 0, and bytecode hash set to None is considered empty.
        assert!(acc.is_empty());

        acc.bytecode_hash = Some(KECCAK_EMPTY);
        // Nonce 0, balance 0, and bytecode hash set to KECCAK_EMPTY is considered empty.
        assert!(acc.is_empty());

        acc.balance = U256::from(2);
        // Non-zero balance makes it non-empty.
        assert!(!acc.is_empty());

        acc.balance = U256::ZERO;
        acc.nonce = 10;
        // Non-zero nonce makes it non-empty.
        assert!(!acc.is_empty());

        acc.nonce = 0;
        acc.bytecode_hash = Some(B256::from(U256::ZERO));
        // Non-empty bytecode hash makes it non-empty.
        assert!(!acc.is_empty());
    }

    #[test]
    fn test_bytecode() {
        let mut buf = vec![];
        let bytecode = Bytecode::new_raw(Bytes::default());
        let len = bytecode.to_compact(&mut buf);
        assert_eq!(len, 5);

        let mut buf = vec![];
        let bytecode = Bytecode::new_raw(Bytes::from(&hex!("ffff")));
        let len = bytecode.to_compact(&mut buf);
        assert_eq!(len, 7);

        let mut buf = vec![];
        let bytecode = Bytecode(RevmBytecode::LegacyAnalyzed(LegacyAnalyzedBytecode::new(
            Bytes::from(&hex!("ffff")),
            2,
            JumpTable::from_slice(&[0]),
        )));
        let len = bytecode.to_compact(&mut buf);
        assert_eq!(len, 16);

        let (decoded, remainder) = Bytecode::from_compact(&buf, len);
        assert_eq!(decoded, bytecode);
        assert!(remainder.is_empty());
    }
}