reth_trie_common/
proofs.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
//! Merkle trie proofs.

use crate::{Nibbles, TrieAccount};
use alloc::vec::Vec;
use alloy_consensus::constants::KECCAK_EMPTY;
use alloy_primitives::{
    keccak256,
    map::{hash_map, B256HashMap, B256HashSet, HashMap},
    Address, Bytes, B256, U256,
};
use alloy_rlp::{encode_fixed_size, Decodable, EMPTY_STRING_CODE};
use alloy_trie::{
    nodes::TrieNode,
    proof::{verify_proof, ProofNodes, ProofVerificationError},
    TrieMask, EMPTY_ROOT_HASH,
};
use itertools::Itertools;
use reth_primitives_traits::Account;

/// Proof targets map.
pub type MultiProofTargets = B256HashMap<B256HashSet>;

/// The state multiproof of target accounts and multiproofs of their storage tries.
/// Multiproof is effectively a state subtrie that only contains the nodes
/// in the paths of target accounts.
#[derive(Clone, Default, Debug, PartialEq, Eq)]
pub struct MultiProof {
    /// State trie multiproof for requested accounts.
    pub account_subtree: ProofNodes,
    /// The hash masks of the branch nodes in the account proof.
    pub branch_node_hash_masks: HashMap<Nibbles, TrieMask>,
    /// Storage trie multiproofs.
    pub storages: B256HashMap<StorageMultiProof>,
}

impl MultiProof {
    /// Return the account proof nodes for the given account path.
    pub fn account_proof_nodes(&self, path: &Nibbles) -> Vec<(Nibbles, Bytes)> {
        self.account_subtree.matching_nodes_sorted(path)
    }

    /// Return the storage proof nodes for the given storage slots of the account path.
    pub fn storage_proof_nodes(
        &self,
        hashed_address: B256,
        slots: impl IntoIterator<Item = B256>,
    ) -> Vec<(B256, Vec<(Nibbles, Bytes)>)> {
        self.storages
            .get(&hashed_address)
            .map(|storage_mp| {
                slots
                    .into_iter()
                    .map(|slot| {
                        let nibbles = Nibbles::unpack(slot);
                        (slot, storage_mp.subtree.matching_nodes_sorted(&nibbles))
                    })
                    .collect()
            })
            .unwrap_or_default()
    }

    /// Construct the account proof from the multiproof.
    pub fn account_proof(
        &self,
        address: Address,
        slots: &[B256],
    ) -> Result<AccountProof, alloy_rlp::Error> {
        let hashed_address = keccak256(address);
        let nibbles = Nibbles::unpack(hashed_address);

        // Retrieve the account proof.
        let proof = self
            .account_proof_nodes(&nibbles)
            .into_iter()
            .map(|(_, node)| node)
            .collect::<Vec<_>>();

        // Inspect the last node in the proof. If it's a leaf node with matching suffix,
        // then the node contains the encoded trie account.
        let info = 'info: {
            if let Some(last) = proof.last() {
                if let TrieNode::Leaf(leaf) = TrieNode::decode(&mut &last[..])? {
                    if nibbles.ends_with(&leaf.key) {
                        let account = TrieAccount::decode(&mut &leaf.value[..])?;
                        break 'info Some(Account {
                            balance: account.balance,
                            nonce: account.nonce,
                            bytecode_hash: (account.code_hash != KECCAK_EMPTY)
                                .then_some(account.code_hash),
                        })
                    }
                }
            }
            None
        };

        // Retrieve proofs for requested storage slots.
        let storage_multiproof = self.storages.get(&hashed_address);
        let storage_root = storage_multiproof.map(|m| m.root).unwrap_or(EMPTY_ROOT_HASH);
        let mut storage_proofs = Vec::with_capacity(slots.len());
        for slot in slots {
            let proof = if let Some(multiproof) = &storage_multiproof {
                multiproof.storage_proof(*slot)?
            } else {
                StorageProof::new(*slot)
            };
            storage_proofs.push(proof);
        }
        Ok(AccountProof { address, info, proof, storage_root, storage_proofs })
    }

    /// Extends this multiproof with another one, merging both account and storage
    /// proofs.
    pub fn extend(&mut self, other: Self) {
        self.account_subtree.extend_from(other.account_subtree);

        self.branch_node_hash_masks.extend(other.branch_node_hash_masks);

        for (hashed_address, storage) in other.storages {
            match self.storages.entry(hashed_address) {
                hash_map::Entry::Occupied(mut entry) => {
                    debug_assert_eq!(entry.get().root, storage.root);
                    let entry = entry.get_mut();
                    entry.subtree.extend_from(storage.subtree);
                    entry.branch_node_hash_masks.extend(storage.branch_node_hash_masks);
                }
                hash_map::Entry::Vacant(entry) => {
                    entry.insert(storage);
                }
            }
        }
    }
}

/// The merkle multiproof of storage trie.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct StorageMultiProof {
    /// Storage trie root.
    pub root: B256,
    /// Storage multiproof for requested slots.
    pub subtree: ProofNodes,
    /// The hash masks of the branch nodes in the storage proof.
    pub branch_node_hash_masks: HashMap<Nibbles, TrieMask>,
}

impl StorageMultiProof {
    /// Create new storage multiproof for empty trie.
    pub fn empty() -> Self {
        Self {
            root: EMPTY_ROOT_HASH,
            subtree: ProofNodes::from_iter([(
                Nibbles::default(),
                Bytes::from([EMPTY_STRING_CODE]),
            )]),
            branch_node_hash_masks: HashMap::default(),
        }
    }

    /// Return storage proofs for the target storage slot (unhashed).
    pub fn storage_proof(&self, slot: B256) -> Result<StorageProof, alloy_rlp::Error> {
        let nibbles = Nibbles::unpack(keccak256(slot));

        // Retrieve the storage proof.
        let proof = self
            .subtree
            .matching_nodes_iter(&nibbles)
            .sorted_by(|a, b| a.0.cmp(b.0))
            .map(|(_, node)| node.clone())
            .collect::<Vec<_>>();

        // Inspect the last node in the proof. If it's a leaf node with matching suffix,
        // then the node contains the encoded slot value.
        let value = 'value: {
            if let Some(last) = proof.last() {
                if let TrieNode::Leaf(leaf) = TrieNode::decode(&mut &last[..])? {
                    if nibbles.ends_with(&leaf.key) {
                        break 'value U256::decode(&mut &leaf.value[..])?
                    }
                }
            }
            U256::ZERO
        };

        Ok(StorageProof { key: slot, nibbles, value, proof })
    }
}

/// The merkle proof with the relevant account info.
#[derive(Clone, PartialEq, Eq, Debug)]
#[cfg_attr(any(test, feature = "serde"), derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(any(test, feature = "serde"), serde(rename_all = "camelCase"))]
pub struct AccountProof {
    /// The address associated with the account.
    pub address: Address,
    /// Account info.
    pub info: Option<Account>,
    /// Array of rlp-serialized merkle trie nodes which starting from the root node and
    /// following the path of the hashed address as key.
    pub proof: Vec<Bytes>,
    /// The storage trie root.
    pub storage_root: B256,
    /// Array of storage proofs as requested.
    pub storage_proofs: Vec<StorageProof>,
}

#[cfg(feature = "eip1186")]
impl AccountProof {
    /// Convert into an EIP-1186 account proof response
    pub fn into_eip1186_response(
        self,
        slots: Vec<alloy_serde::JsonStorageKey>,
    ) -> alloy_rpc_types_eth::EIP1186AccountProofResponse {
        let info = self.info.unwrap_or_default();
        alloy_rpc_types_eth::EIP1186AccountProofResponse {
            address: self.address,
            balance: info.balance,
            code_hash: info.get_bytecode_hash(),
            nonce: info.nonce,
            storage_hash: self.storage_root,
            account_proof: self.proof,
            storage_proof: self
                .storage_proofs
                .into_iter()
                .filter_map(|proof| {
                    let input_slot = slots.iter().find(|s| s.as_b256() == proof.key)?;
                    Some(proof.into_eip1186_proof(*input_slot))
                })
                .collect(),
        }
    }
}

impl Default for AccountProof {
    fn default() -> Self {
        Self::new(Address::default())
    }
}

impl AccountProof {
    /// Create new account proof entity.
    pub const fn new(address: Address) -> Self {
        Self {
            address,
            info: None,
            proof: Vec::new(),
            storage_root: EMPTY_ROOT_HASH,
            storage_proofs: Vec::new(),
        }
    }

    /// Verify the storage proofs and account proof against the provided state root.
    pub fn verify(&self, root: B256) -> Result<(), ProofVerificationError> {
        // Verify storage proofs.
        for storage_proof in &self.storage_proofs {
            storage_proof.verify(self.storage_root)?;
        }

        // Verify the account proof.
        let expected = if self.info.is_none() && self.storage_root == EMPTY_ROOT_HASH {
            None
        } else {
            Some(alloy_rlp::encode(
                self.info.unwrap_or_default().into_trie_account(self.storage_root),
            ))
        };
        let nibbles = Nibbles::unpack(keccak256(self.address));
        verify_proof(root, nibbles, expected, &self.proof)
    }
}

/// The merkle proof of the storage entry.
#[derive(Clone, PartialEq, Eq, Default, Debug)]
#[cfg_attr(any(test, feature = "serde"), derive(serde::Serialize, serde::Deserialize))]
pub struct StorageProof {
    /// The raw storage key.
    pub key: B256,
    /// The hashed storage key nibbles.
    pub nibbles: Nibbles,
    /// The storage value.
    pub value: U256,
    /// Array of rlp-serialized merkle trie nodes which starting from the storage root node and
    /// following the path of the hashed storage slot as key.
    pub proof: Vec<Bytes>,
}

impl StorageProof {
    /// Convert into an EIP-1186 storage proof
    #[cfg(feature = "eip1186")]
    pub fn into_eip1186_proof(
        self,
        slot: alloy_serde::JsonStorageKey,
    ) -> alloy_rpc_types_eth::EIP1186StorageProof {
        alloy_rpc_types_eth::EIP1186StorageProof { key: slot, value: self.value, proof: self.proof }
    }
}

impl StorageProof {
    /// Create new storage proof from the storage slot.
    pub fn new(key: B256) -> Self {
        let nibbles = Nibbles::unpack(keccak256(key));
        Self { key, nibbles, ..Default::default() }
    }

    /// Create new storage proof from the storage slot and its pre-hashed image.
    pub fn new_with_hashed(key: B256, hashed_key: B256) -> Self {
        Self { key, nibbles: Nibbles::unpack(hashed_key), ..Default::default() }
    }

    /// Create new storage proof from the storage slot and its pre-hashed image.
    pub fn new_with_nibbles(key: B256, nibbles: Nibbles) -> Self {
        Self { key, nibbles, ..Default::default() }
    }

    /// Set proof nodes on storage proof.
    pub fn with_proof(mut self, proof: Vec<Bytes>) -> Self {
        self.proof = proof;
        self
    }

    /// Verify the proof against the provided storage root.
    pub fn verify(&self, root: B256) -> Result<(), ProofVerificationError> {
        let expected =
            if self.value.is_zero() { None } else { Some(encode_fixed_size(&self.value).to_vec()) };
        verify_proof(root, self.nibbles.clone(), expected, &self.proof)
    }
}

/// Implementation of hasher using our keccak256 hashing function
/// for compatibility with `triehash` crate.
#[cfg(any(test, feature = "test-utils"))]
pub mod triehash {
    use alloy_primitives::{keccak256, B256};
    use alloy_rlp::RlpEncodable;
    use hash_db::Hasher;
    use plain_hasher::PlainHasher;

    /// A [Hasher] that calculates a keccak256 hash of the given data.
    #[derive(Default, Debug, Clone, PartialEq, Eq, RlpEncodable)]
    #[non_exhaustive]
    pub struct KeccakHasher;

    #[cfg(any(test, feature = "test-utils"))]
    impl Hasher for KeccakHasher {
        type Out = B256;
        type StdHasher = PlainHasher;

        const LENGTH: usize = 32;

        fn hash(x: &[u8]) -> Self::Out {
            keccak256(x)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_multiproof_extend_account_proofs() {
        let mut proof1 = MultiProof::default();
        let mut proof2 = MultiProof::default();

        let addr1 = B256::random();
        let addr2 = B256::random();

        proof1.account_subtree.insert(
            Nibbles::unpack(addr1),
            alloy_rlp::encode_fixed_size(&U256::from(42)).to_vec().into(),
        );
        proof2.account_subtree.insert(
            Nibbles::unpack(addr2),
            alloy_rlp::encode_fixed_size(&U256::from(43)).to_vec().into(),
        );

        proof1.extend(proof2);

        assert!(proof1.account_subtree.contains_key(&Nibbles::unpack(addr1)));
        assert!(proof1.account_subtree.contains_key(&Nibbles::unpack(addr2)));
    }

    #[test]
    fn test_multiproof_extend_storage_proofs() {
        let mut proof1 = MultiProof::default();
        let mut proof2 = MultiProof::default();

        let addr = B256::random();
        let root = B256::random();

        let mut subtree1 = ProofNodes::default();
        subtree1.insert(
            Nibbles::from_nibbles(vec![0]),
            alloy_rlp::encode_fixed_size(&U256::from(42)).to_vec().into(),
        );
        proof1.storages.insert(
            addr,
            StorageMultiProof {
                root,
                subtree: subtree1,
                branch_node_hash_masks: HashMap::default(),
            },
        );

        let mut subtree2 = ProofNodes::default();
        subtree2.insert(
            Nibbles::from_nibbles(vec![1]),
            alloy_rlp::encode_fixed_size(&U256::from(43)).to_vec().into(),
        );
        proof2.storages.insert(
            addr,
            StorageMultiProof {
                root,
                subtree: subtree2,
                branch_node_hash_masks: HashMap::default(),
            },
        );

        proof1.extend(proof2);

        let storage = proof1.storages.get(&addr).unwrap();
        assert_eq!(storage.root, root);
        assert!(storage.subtree.contains_key(&Nibbles::from_nibbles(vec![0])));
        assert!(storage.subtree.contains_key(&Nibbles::from_nibbles(vec![1])));
    }
}