reth_libmdbx/transaction.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
use crate::{
database::Database,
environment::Environment,
error::{mdbx_result, Result},
flags::{DatabaseFlags, WriteFlags},
txn_manager::{TxnManagerMessage, TxnPtr},
Cursor, Error, Stat, TableObject,
};
use ffi::{MDBX_txn_flags_t, MDBX_TXN_RDONLY, MDBX_TXN_READWRITE};
use indexmap::IndexSet;
use parking_lot::{Mutex, MutexGuard};
use std::{
ffi::{c_uint, c_void},
fmt::{self, Debug},
mem::size_of,
ptr, slice,
sync::{atomic::AtomicBool, mpsc::sync_channel, Arc},
time::Duration,
};
#[cfg(feature = "read-tx-timeouts")]
use ffi::mdbx_txn_renew;
mod private {
use super::*;
pub trait Sealed {}
impl Sealed for RO {}
impl Sealed for RW {}
}
pub trait TransactionKind: private::Sealed + Send + Sync + Debug + 'static {
#[doc(hidden)]
const OPEN_FLAGS: MDBX_txn_flags_t;
/// Convenience flag for distinguishing between read-only and read-write transactions.
#[doc(hidden)]
const IS_READ_ONLY: bool;
}
#[derive(Debug)]
#[non_exhaustive]
pub struct RO;
#[derive(Debug)]
#[non_exhaustive]
pub struct RW;
impl TransactionKind for RO {
const OPEN_FLAGS: MDBX_txn_flags_t = MDBX_TXN_RDONLY;
const IS_READ_ONLY: bool = true;
}
impl TransactionKind for RW {
const OPEN_FLAGS: MDBX_txn_flags_t = MDBX_TXN_READWRITE;
const IS_READ_ONLY: bool = false;
}
/// An MDBX transaction.
///
/// All database operations require a transaction.
pub struct Transaction<K>
where
K: TransactionKind,
{
inner: Arc<TransactionInner<K>>,
}
impl<K> Transaction<K>
where
K: TransactionKind,
{
pub(crate) fn new(env: Environment) -> Result<Self> {
let mut txn: *mut ffi::MDBX_txn = ptr::null_mut();
unsafe {
mdbx_result(ffi::mdbx_txn_begin_ex(
env.env_ptr(),
ptr::null_mut(),
K::OPEN_FLAGS,
&mut txn,
ptr::null_mut(),
))?;
Ok(Self::new_from_ptr(env, txn))
}
}
pub(crate) fn new_from_ptr(env: Environment, txn_ptr: *mut ffi::MDBX_txn) -> Self {
let txn = TransactionPtr::new(txn_ptr);
#[cfg(feature = "read-tx-timeouts")]
if K::IS_READ_ONLY {
env.txn_manager().add_active_read_transaction(txn_ptr, txn.clone())
}
let inner = TransactionInner {
txn,
primed_dbis: Mutex::new(IndexSet::new()),
committed: AtomicBool::new(false),
env,
_marker: Default::default(),
};
Self { inner: Arc::new(inner) }
}
/// Executes the given closure once the lock on the transaction is acquired.
///
/// The caller **must** ensure that the pointer is not used after the
/// lifetime of the transaction.
#[inline]
pub fn txn_execute<F, T>(&self, f: F) -> Result<T>
where
F: FnOnce(*mut ffi::MDBX_txn) -> T,
{
self.inner.txn_execute(f)
}
/// Executes the given closure once the lock on the transaction is acquired. If the transaction
/// is timed out, it will be renewed first.
///
/// Returns the result of the closure or an error if the transaction renewal fails.
#[inline]
pub(crate) fn txn_execute_renew_on_timeout<F, T>(&self, f: F) -> Result<T>
where
F: FnOnce(*mut ffi::MDBX_txn) -> T,
{
self.inner.txn_execute_renew_on_timeout(f)
}
/// Returns a copy of the raw pointer to the underlying MDBX transaction.
#[doc(hidden)]
#[cfg(test)]
pub fn txn(&self) -> *mut ffi::MDBX_txn {
self.inner.txn.txn
}
/// Returns a raw pointer to the MDBX environment.
pub fn env(&self) -> &Environment {
&self.inner.env
}
/// Returns the transaction id.
pub fn id(&self) -> Result<u64> {
self.txn_execute(|txn| unsafe { ffi::mdbx_txn_id(txn) })
}
/// Gets an item from a database.
///
/// This function retrieves the data associated with the given key in the
/// database. If the database supports duplicate keys
/// ([`DatabaseFlags::DUP_SORT`]) then the first data item for the key will be
/// returned. Retrieval of other items requires the use of
/// [Cursor]. If the item is not in the database, then
/// [None] will be returned.
pub fn get<Key>(&self, dbi: ffi::MDBX_dbi, key: &[u8]) -> Result<Option<Key>>
where
Key: TableObject,
{
let key_val: ffi::MDBX_val =
ffi::MDBX_val { iov_len: key.len(), iov_base: key.as_ptr() as *mut c_void };
let mut data_val: ffi::MDBX_val = ffi::MDBX_val { iov_len: 0, iov_base: ptr::null_mut() };
self.txn_execute(|txn| unsafe {
match ffi::mdbx_get(txn, dbi, &key_val, &mut data_val) {
ffi::MDBX_SUCCESS => Key::decode_val::<K>(txn, data_val).map(Some),
ffi::MDBX_NOTFOUND => Ok(None),
err_code => Err(Error::from_err_code(err_code)),
}
})?
}
/// Commits the transaction.
///
/// Any pending operations will be saved.
pub fn commit(self) -> Result<(bool, CommitLatency)> {
self.commit_and_rebind_open_dbs().map(|v| (v.0, v.1))
}
pub fn prime_for_permaopen(&self, db: Database) {
self.inner.primed_dbis.lock().insert(db.dbi());
}
/// Commits the transaction and returns table handles permanently open until dropped.
pub fn commit_and_rebind_open_dbs(self) -> Result<(bool, CommitLatency, Vec<Database>)> {
let result = {
let result = self.txn_execute(|txn| {
if K::IS_READ_ONLY {
#[cfg(feature = "read-tx-timeouts")]
self.env().txn_manager().remove_active_read_transaction(txn);
let mut latency = CommitLatency::new();
mdbx_result(unsafe {
ffi::mdbx_txn_commit_ex(txn, latency.mdb_commit_latency())
})
.map(|v| (v, latency))
} else {
let (sender, rx) = sync_channel(0);
self.env()
.txn_manager()
.send_message(TxnManagerMessage::Commit { tx: TxnPtr(txn), sender });
rx.recv().unwrap()
}
})?;
self.inner.set_committed();
result
};
result.map(|(v, latency)| {
(
v,
latency,
self.inner
.primed_dbis
.lock()
.iter()
.map(|&dbi| Database::new_from_ptr(dbi, self.env().clone()))
.collect(),
)
})
}
/// Opens a handle to an MDBX database.
///
/// If `name` is [None], then the returned handle will be for the default database.
///
/// If `name` is not [None], then the returned handle will be for a named database. In this
/// case the environment must be configured to allow named databases through
/// [`EnvironmentBuilder::set_max_dbs()`](crate::EnvironmentBuilder::set_max_dbs).
///
/// The returned database handle may be shared among any transaction in the environment.
///
/// The database name may not contain the null character.
pub fn open_db(&self, name: Option<&str>) -> Result<Database> {
Database::new(self, name, 0)
}
/// Gets the option flags for the given database in the transaction.
pub fn db_flags(&self, db: &Database) -> Result<DatabaseFlags> {
let mut flags: c_uint = 0;
unsafe {
self.txn_execute(|txn| {
mdbx_result(ffi::mdbx_dbi_flags_ex(txn, db.dbi(), &mut flags, ptr::null_mut()))
})??;
}
// The types are not the same on Windows. Great!
#[cfg_attr(not(windows), allow(clippy::useless_conversion))]
Ok(DatabaseFlags::from_bits_truncate(flags.try_into().unwrap()))
}
/// Retrieves database statistics.
pub fn db_stat(&self, db: &Database) -> Result<Stat> {
self.db_stat_with_dbi(db.dbi())
}
/// Retrieves database statistics by the given dbi.
pub fn db_stat_with_dbi(&self, dbi: ffi::MDBX_dbi) -> Result<Stat> {
unsafe {
let mut stat = Stat::new();
self.txn_execute(|txn| {
mdbx_result(ffi::mdbx_dbi_stat(txn, dbi, stat.mdb_stat(), size_of::<Stat>()))
})??;
Ok(stat)
}
}
/// Open a new cursor on the given database.
pub fn cursor(&self, db: &Database) -> Result<Cursor<K>> {
Cursor::new(self.clone(), db.dbi())
}
/// Open a new cursor on the given dbi.
pub fn cursor_with_dbi(&self, dbi: ffi::MDBX_dbi) -> Result<Cursor<K>> {
Cursor::new(self.clone(), dbi)
}
/// Disables a timeout for this read transaction.
#[cfg(feature = "read-tx-timeouts")]
pub fn disable_timeout(&self) {
if K::IS_READ_ONLY {
self.env().txn_manager().remove_active_read_transaction(self.inner.txn.txn);
}
}
}
impl<K> Clone for Transaction<K>
where
K: TransactionKind,
{
fn clone(&self) -> Self {
Self { inner: Arc::clone(&self.inner) }
}
}
impl<K> fmt::Debug for Transaction<K>
where
K: TransactionKind,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RoTransaction").finish_non_exhaustive()
}
}
/// Internals of a transaction.
struct TransactionInner<K>
where
K: TransactionKind,
{
/// The transaction pointer itself.
txn: TransactionPtr,
/// A set of database handles that are primed for permaopen.
primed_dbis: Mutex<IndexSet<ffi::MDBX_dbi>>,
/// Whether the transaction has committed.
committed: AtomicBool,
env: Environment,
_marker: std::marker::PhantomData<fn(K)>,
}
impl<K> TransactionInner<K>
where
K: TransactionKind,
{
/// Marks the transaction as committed.
fn set_committed(&self) {
self.committed.store(true, std::sync::atomic::Ordering::SeqCst);
}
fn has_committed(&self) -> bool {
self.committed.load(std::sync::atomic::Ordering::SeqCst)
}
#[inline]
fn txn_execute<F, T>(&self, f: F) -> Result<T>
where
F: FnOnce(*mut ffi::MDBX_txn) -> T,
{
self.txn.txn_execute_fail_on_timeout(f)
}
#[inline]
fn txn_execute_renew_on_timeout<F, T>(&self, f: F) -> Result<T>
where
F: FnOnce(*mut ffi::MDBX_txn) -> T,
{
self.txn.txn_execute_renew_on_timeout(f)
}
}
impl<K> Drop for TransactionInner<K>
where
K: TransactionKind,
{
fn drop(&mut self) {
// To be able to abort a timed out transaction, we need to renew it first.
// Hence the usage of `txn_execute_renew_on_timeout` here.
self.txn
.txn_execute_renew_on_timeout(|txn| {
if !self.has_committed() {
if K::IS_READ_ONLY {
#[cfg(feature = "read-tx-timeouts")]
self.env.txn_manager().remove_active_read_transaction(txn);
unsafe {
ffi::mdbx_txn_abort(txn);
}
} else {
let (sender, rx) = sync_channel(0);
self.env
.txn_manager()
.send_message(TxnManagerMessage::Abort { tx: TxnPtr(txn), sender });
rx.recv().unwrap().unwrap();
}
}
})
.unwrap();
}
}
impl Transaction<RW> {
fn open_db_with_flags(&self, name: Option<&str>, flags: DatabaseFlags) -> Result<Database> {
Database::new(self, name, flags.bits())
}
/// Opens a handle to an MDBX database, creating the database if necessary.
///
/// If the database is already created, the given option flags will be added to it.
///
/// If `name` is [None], then the returned handle will be for the default database.
///
/// If `name` is not [None], then the returned handle will be for a named database. In this
/// case the environment must be configured to allow named databases through
/// [`EnvironmentBuilder::set_max_dbs()`](crate::EnvironmentBuilder::set_max_dbs).
///
/// This function will fail with [`Error::BadRslot`] if called by a thread with an open
/// transaction.
pub fn create_db(&self, name: Option<&str>, flags: DatabaseFlags) -> Result<Database> {
self.open_db_with_flags(name, flags | DatabaseFlags::CREATE)
}
/// Stores an item into a database.
///
/// This function stores key/data pairs in the database. The default
/// behavior is to enter the new key/data pair, replacing any previously
/// existing key if duplicates are disallowed, or adding a duplicate data
/// item if duplicates are allowed ([`DatabaseFlags::DUP_SORT`]).
pub fn put(
&self,
dbi: ffi::MDBX_dbi,
key: impl AsRef<[u8]>,
data: impl AsRef<[u8]>,
flags: WriteFlags,
) -> Result<()> {
let key = key.as_ref();
let data = data.as_ref();
let key_val: ffi::MDBX_val =
ffi::MDBX_val { iov_len: key.len(), iov_base: key.as_ptr() as *mut c_void };
let mut data_val: ffi::MDBX_val =
ffi::MDBX_val { iov_len: data.len(), iov_base: data.as_ptr() as *mut c_void };
mdbx_result(self.txn_execute(|txn| unsafe {
ffi::mdbx_put(txn, dbi, &key_val, &mut data_val, flags.bits())
})?)?;
Ok(())
}
/// Returns a buffer which can be used to write a value into the item at the
/// given key and with the given length. The buffer must be completely
/// filled by the caller.
pub fn reserve(
&self,
db: &Database,
key: impl AsRef<[u8]>,
len: usize,
flags: WriteFlags,
) -> Result<&mut [u8]> {
let key = key.as_ref();
let key_val: ffi::MDBX_val =
ffi::MDBX_val { iov_len: key.len(), iov_base: key.as_ptr() as *mut c_void };
let mut data_val: ffi::MDBX_val =
ffi::MDBX_val { iov_len: len, iov_base: ptr::null_mut::<c_void>() };
unsafe {
mdbx_result(self.txn_execute(|txn| {
ffi::mdbx_put(
txn,
db.dbi(),
&key_val,
&mut data_val,
flags.bits() | ffi::MDBX_RESERVE,
)
})?)?;
Ok(slice::from_raw_parts_mut(data_val.iov_base as *mut u8, data_val.iov_len))
}
}
/// Delete items from a database.
/// This function removes key/data pairs from the database.
///
/// The data parameter is NOT ignored regardless the database does support sorted duplicate data
/// items or not. If the data parameter is [Some] only the matching data item will be
/// deleted. Otherwise, if data parameter is [None], any/all value(s) for specified key will
/// be deleted.
///
/// Returns `true` if the key/value pair was present.
pub fn del(
&self,
dbi: ffi::MDBX_dbi,
key: impl AsRef<[u8]>,
data: Option<&[u8]>,
) -> Result<bool> {
let key = key.as_ref();
let key_val: ffi::MDBX_val =
ffi::MDBX_val { iov_len: key.len(), iov_base: key.as_ptr() as *mut c_void };
let data_val: Option<ffi::MDBX_val> = data.map(|data| ffi::MDBX_val {
iov_len: data.len(),
iov_base: data.as_ptr() as *mut c_void,
});
mdbx_result({
self.txn_execute(|txn| {
if let Some(d) = data_val {
unsafe { ffi::mdbx_del(txn, dbi, &key_val, &d) }
} else {
unsafe { ffi::mdbx_del(txn, dbi, &key_val, ptr::null()) }
}
})?
})
.map(|_| true)
.or_else(|e| match e {
Error::NotFound => Ok(false),
other => Err(other),
})
}
/// Empties the given database. All items will be removed.
pub fn clear_db(&self, dbi: ffi::MDBX_dbi) -> Result<()> {
mdbx_result(self.txn_execute(|txn| unsafe { ffi::mdbx_drop(txn, dbi, false) })?)?;
Ok(())
}
/// Drops the database from the environment.
///
/// # Safety
/// Caller must close ALL other [Database] and [Cursor] instances pointing to the same dbi
/// BEFORE calling this function.
pub unsafe fn drop_db(&self, db: Database) -> Result<()> {
mdbx_result(self.txn_execute(|txn| ffi::mdbx_drop(txn, db.dbi(), true))?)?;
Ok(())
}
}
impl Transaction<RO> {
/// Closes the database handle.
///
/// # Safety
/// Caller must close ALL other [Database] and [Cursor] instances pointing to the same dbi
/// BEFORE calling this function.
pub unsafe fn close_db(&self, db: Database) -> Result<()> {
mdbx_result(ffi::mdbx_dbi_close(self.env().env_ptr(), db.dbi()))?;
Ok(())
}
}
impl Transaction<RW> {
/// Begins a new nested transaction inside of this transaction.
pub fn begin_nested_txn(&mut self) -> Result<Self> {
if self.inner.env.is_write_map() {
return Err(Error::NestedTransactionsUnsupportedWithWriteMap)
}
self.txn_execute(|txn| {
let (tx, rx) = sync_channel(0);
self.env().txn_manager().send_message(TxnManagerMessage::Begin {
parent: TxnPtr(txn),
flags: RW::OPEN_FLAGS,
sender: tx,
});
rx.recv().unwrap().map(|ptr| Self::new_from_ptr(self.env().clone(), ptr.0))
})?
}
}
/// A shareable pointer to an MDBX transaction.
#[derive(Debug, Clone)]
pub(crate) struct TransactionPtr {
txn: *mut ffi::MDBX_txn,
#[cfg(feature = "read-tx-timeouts")]
timed_out: Arc<AtomicBool>,
lock: Arc<Mutex<()>>,
}
impl TransactionPtr {
fn new(txn: *mut ffi::MDBX_txn) -> Self {
Self {
txn,
#[cfg(feature = "read-tx-timeouts")]
timed_out: Arc::new(AtomicBool::new(false)),
lock: Arc::new(Mutex::new(())),
}
}
/// Returns `true` if the transaction is timed out.
///
/// When transaction is timed out via `TxnManager`, it's actually reset using
/// `mdbx_txn_reset`. It makes the transaction unusable (MDBX fails on any usages of such
/// transactions).
///
/// Importantly, we can't rely on `MDBX_TXN_FINISHED` flag to check if the transaction is timed
/// out using `mdbx_txn_reset`, because MDBX uses it in other cases too.
#[cfg(feature = "read-tx-timeouts")]
fn is_timed_out(&self) -> bool {
self.timed_out.load(std::sync::atomic::Ordering::SeqCst)
}
#[cfg(feature = "read-tx-timeouts")]
pub(crate) fn set_timed_out(&self) {
self.timed_out.store(true, std::sync::atomic::Ordering::SeqCst);
}
fn lock(&self) -> MutexGuard<'_, ()> {
if let Some(lock) = self.lock.try_lock() {
lock
} else {
tracing::debug!(
target: "libmdbx",
txn = %self.txn as usize,
backtrace = %std::backtrace::Backtrace::force_capture(),
"Transaction lock is already acquired, blocking..."
);
self.lock.lock()
}
}
/// Executes the given closure once the lock on the transaction is acquired.
///
/// Returns the result of the closure or an error if the transaction is timed out.
#[inline]
pub(crate) fn txn_execute_fail_on_timeout<F, T>(&self, f: F) -> Result<T>
where
F: FnOnce(*mut ffi::MDBX_txn) -> T,
{
let _lck = self.lock();
// No race condition with the `TxnManager` timing out the transaction is possible here,
// because we're taking a lock for any actions on the transaction pointer, including a call
// to the `mdbx_txn_reset`.
#[cfg(feature = "read-tx-timeouts")]
if self.is_timed_out() {
return Err(Error::ReadTransactionTimeout)
}
Ok((f)(self.txn))
}
/// Executes the given closure once the lock on the transaction is acquired. If the transaction
/// is timed out, it will be renewed first.
///
/// Returns the result of the closure or an error if the transaction renewal fails.
#[inline]
pub(crate) fn txn_execute_renew_on_timeout<F, T>(&self, f: F) -> Result<T>
where
F: FnOnce(*mut ffi::MDBX_txn) -> T,
{
let _lck = self.lock();
// To be able to do any operations on the transaction, we need to renew it first.
#[cfg(feature = "read-tx-timeouts")]
if self.is_timed_out() {
mdbx_result(unsafe { mdbx_txn_renew(self.txn) })?;
}
Ok((f)(self.txn))
}
}
/// Commit latencies info.
///
/// Contains information about latency of commit stages.
/// Inner struct stores this info in 1/65536 of seconds units.
#[derive(Debug)]
#[repr(transparent)]
pub struct CommitLatency(ffi::MDBX_commit_latency);
impl CommitLatency {
/// Create a new `CommitLatency` with zero'd inner struct `ffi::MDBX_commit_latency`.
pub(crate) const fn new() -> Self {
unsafe { Self(std::mem::zeroed()) }
}
/// Returns a mut pointer to `ffi::MDBX_commit_latency`.
pub(crate) fn mdb_commit_latency(&mut self) -> *mut ffi::MDBX_commit_latency {
&mut self.0
}
}
impl CommitLatency {
/// Duration of preparation (commit child transactions, update
/// sub-databases records and cursors destroying).
#[inline]
pub const fn preparation(&self) -> Duration {
Self::time_to_duration(self.0.preparation)
}
/// Duration of GC update by wall clock.
#[inline]
pub const fn gc_wallclock(&self) -> Duration {
Self::time_to_duration(self.0.gc_wallclock)
}
/// Duration of internal audit if enabled.
#[inline]
pub const fn audit(&self) -> Duration {
Self::time_to_duration(self.0.audit)
}
/// Duration of writing dirty/modified data pages to a filesystem,
/// i.e. the summary duration of a `write()` syscalls during commit.
#[inline]
pub const fn write(&self) -> Duration {
Self::time_to_duration(self.0.write)
}
/// Duration of syncing written data to the disk/storage, i.e.
/// the duration of a `fdatasync()` or a `msync()` syscall during commit.
#[inline]
pub const fn sync(&self) -> Duration {
Self::time_to_duration(self.0.sync)
}
/// Duration of transaction ending (releasing resources).
#[inline]
pub const fn ending(&self) -> Duration {
Self::time_to_duration(self.0.ending)
}
/// The total duration of a commit.
#[inline]
pub const fn whole(&self) -> Duration {
Self::time_to_duration(self.0.whole)
}
/// User-mode CPU time spent on GC update.
#[inline]
pub const fn gc_cputime(&self) -> Duration {
Self::time_to_duration(self.0.gc_cputime)
}
#[inline]
const fn time_to_duration(time: u32) -> Duration {
Duration::from_nanos(time as u64 * (1_000_000_000 / 65_536))
}
}
// SAFETY: Access to the transaction is synchronized by the lock.
unsafe impl Send for TransactionPtr {}
// SAFETY: Access to the transaction is synchronized by the lock.
unsafe impl Sync for TransactionPtr {}
#[cfg(test)]
mod tests {
use super::*;
const fn assert_send_sync<T: Send + Sync>() {}
#[allow(dead_code)]
const fn test_txn_send_sync() {
assert_send_sync::<Transaction<RO>>();
assert_send_sync::<Transaction<RW>>();
}
}