reth_trie_sparse/
trie.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
use crate::blinded::{BlindedProvider, DefaultBlindedProvider};
use alloy_primitives::{
    hex, keccak256,
    map::{Entry, HashMap, HashSet},
    B256,
};
use alloy_rlp::Decodable;
use reth_execution_errors::{SparseTrieError, SparseTrieErrorKind, SparseTrieResult};
use reth_tracing::tracing::trace;
use reth_trie_common::{
    prefix_set::{PrefixSet, PrefixSetMut},
    BranchNodeCompact, BranchNodeRef, ExtensionNodeRef, LeafNodeRef, Nibbles, RlpNode, TrieMask,
    TrieNode, CHILD_INDEX_RANGE, EMPTY_ROOT_HASH,
};
use smallvec::SmallVec;
use std::{borrow::Cow, fmt};

/// Inner representation of the sparse trie.
/// Sparse trie is blind by default until nodes are revealed.
#[derive(PartialEq, Eq)]
pub enum SparseTrie<P = DefaultBlindedProvider> {
    /// None of the trie nodes are known.
    Blind,
    /// The trie nodes have been revealed.
    Revealed(Box<RevealedSparseTrie<P>>),
}

impl<P> fmt::Debug for SparseTrie<P> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::Blind => write!(f, "Blind"),
            Self::Revealed(revealed) => write!(f, "Revealed({revealed:?})"),
        }
    }
}

impl<P> Default for SparseTrie<P> {
    fn default() -> Self {
        Self::Blind
    }
}

impl SparseTrie {
    /// Creates new blind trie.
    pub const fn blind() -> Self {
        Self::Blind
    }

    /// Creates new revealed empty trie.
    pub fn revealed_empty() -> Self {
        Self::Revealed(Box::default())
    }

    /// Reveals the root node if the trie is blinded.
    ///
    /// # Returns
    ///
    /// Mutable reference to [`RevealedSparseTrie`].
    pub fn reveal_root(
        &mut self,
        root: TrieNode,
        hash_mask: Option<TrieMask>,
        retain_updates: bool,
    ) -> SparseTrieResult<&mut RevealedSparseTrie> {
        self.reveal_root_with_provider(Default::default(), root, hash_mask, retain_updates)
    }
}

impl<P> SparseTrie<P> {
    /// Returns `true` if the sparse trie has no revealed nodes.
    pub const fn is_blind(&self) -> bool {
        matches!(self, Self::Blind)
    }

    /// Returns mutable reference to revealed sparse trie if the trie is not blind.
    pub fn as_revealed_mut(&mut self) -> Option<&mut RevealedSparseTrie<P>> {
        if let Self::Revealed(revealed) = self {
            Some(revealed)
        } else {
            None
        }
    }

    /// Reveals the root node if the trie is blinded.
    ///
    /// # Returns
    ///
    /// Mutable reference to [`RevealedSparseTrie`].
    pub fn reveal_root_with_provider(
        &mut self,
        provider: P,
        root: TrieNode,
        hash_mask: Option<TrieMask>,
        retain_updates: bool,
    ) -> SparseTrieResult<&mut RevealedSparseTrie<P>> {
        if self.is_blind() {
            *self = Self::Revealed(Box::new(RevealedSparseTrie::from_provider_and_root(
                provider,
                root,
                hash_mask,
                retain_updates,
            )?))
        }
        Ok(self.as_revealed_mut().unwrap())
    }

    /// Wipe the trie, removing all values and nodes, and replacing the root with an empty node.
    pub fn wipe(&mut self) -> SparseTrieResult<()> {
        let revealed = self.as_revealed_mut().ok_or(SparseTrieErrorKind::Blind)?;
        revealed.wipe();
        Ok(())
    }

    /// Calculates and returns the trie root if the trie has been revealed.
    pub fn root(&mut self) -> Option<B256> {
        Some(self.as_revealed_mut()?.root())
    }

    /// Calculates the hashes of the nodes below the provided level.
    pub fn calculate_below_level(&mut self, level: usize) {
        self.as_revealed_mut().unwrap().update_rlp_node_level(level);
    }
}

impl<P> SparseTrie<P>
where
    P: BlindedProvider,
    SparseTrieError: From<P::Error>,
{
    /// Update the leaf node.
    pub fn update_leaf(&mut self, path: Nibbles, value: Vec<u8>) -> SparseTrieResult<()> {
        let revealed = self.as_revealed_mut().ok_or(SparseTrieErrorKind::Blind)?;
        revealed.update_leaf(path, value)?;
        Ok(())
    }

    /// Remove the leaf node.
    pub fn remove_leaf(&mut self, path: &Nibbles) -> SparseTrieResult<()> {
        let revealed = self.as_revealed_mut().ok_or(SparseTrieErrorKind::Blind)?;
        revealed.remove_leaf(path)?;
        Ok(())
    }
}

/// The representation of revealed sparse trie.
///
/// ## Invariants
///
/// - The root node is always present in `nodes` collection.
/// - Each leaf entry in `nodes` collection must have a corresponding entry in `values` collection.
///   The opposite is also true.
/// - All keys in `values` collection are full leaf paths.
#[derive(Clone, PartialEq, Eq)]
pub struct RevealedSparseTrie<P = DefaultBlindedProvider> {
    /// Blinded node provider.
    provider: P,
    /// All trie nodes.
    nodes: HashMap<Nibbles, SparseNode>,
    /// All branch node hash masks.
    branch_node_hash_masks: HashMap<Nibbles, TrieMask>,
    /// All leaf values.
    values: HashMap<Nibbles, Vec<u8>>,
    /// Prefix set.
    prefix_set: PrefixSetMut,
    /// Retained trie updates.
    updates: Option<SparseTrieUpdates>,
    /// Reusable buffer for RLP encoding of nodes.
    rlp_buf: Vec<u8>,
}

impl<P> fmt::Debug for RevealedSparseTrie<P> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("RevealedSparseTrie")
            .field("nodes", &self.nodes)
            .field("branch_hash_masks", &self.branch_node_hash_masks)
            .field("values", &self.values)
            .field("prefix_set", &self.prefix_set)
            .field("updates", &self.updates)
            .field("rlp_buf", &hex::encode(&self.rlp_buf))
            .finish_non_exhaustive()
    }
}

impl Default for RevealedSparseTrie {
    fn default() -> Self {
        Self {
            provider: Default::default(),
            nodes: HashMap::from_iter([(Nibbles::default(), SparseNode::Empty)]),
            branch_node_hash_masks: HashMap::default(),
            values: HashMap::default(),
            prefix_set: PrefixSetMut::default(),
            updates: None,
            rlp_buf: Vec::new(),
        }
    }
}

impl RevealedSparseTrie {
    /// Create new revealed sparse trie from the given root node.
    pub fn from_root(
        node: TrieNode,
        hash_mask: Option<TrieMask>,
        retain_updates: bool,
    ) -> SparseTrieResult<Self> {
        let mut this = Self {
            provider: Default::default(),
            nodes: HashMap::default(),
            branch_node_hash_masks: HashMap::default(),
            values: HashMap::default(),
            prefix_set: PrefixSetMut::default(),
            rlp_buf: Vec::new(),
            updates: None,
        }
        .with_updates(retain_updates);
        this.reveal_node(Nibbles::default(), node, hash_mask)?;
        Ok(this)
    }
}

impl<P> RevealedSparseTrie<P> {
    /// Create new revealed sparse trie from the given root node.
    pub fn from_provider_and_root(
        provider: P,
        node: TrieNode,
        hash_mask: Option<TrieMask>,
        retain_updates: bool,
    ) -> SparseTrieResult<Self> {
        let mut this = Self {
            provider,
            nodes: HashMap::default(),
            branch_node_hash_masks: HashMap::default(),
            values: HashMap::default(),
            prefix_set: PrefixSetMut::default(),
            rlp_buf: Vec::new(),
            updates: None,
        }
        .with_updates(retain_updates);
        this.reveal_node(Nibbles::default(), node, hash_mask)?;
        Ok(this)
    }

    /// Set new blinded node provider on sparse trie.
    pub fn with_provider<BP>(self, provider: BP) -> RevealedSparseTrie<BP> {
        RevealedSparseTrie {
            provider,
            nodes: self.nodes,
            branch_node_hash_masks: self.branch_node_hash_masks,
            values: self.values,
            prefix_set: self.prefix_set,
            updates: self.updates,
            rlp_buf: self.rlp_buf,
        }
    }

    /// Set the retention of branch node updates and deletions.
    pub fn with_updates(mut self, retain_updates: bool) -> Self {
        if retain_updates {
            self.updates = Some(SparseTrieUpdates::default());
        }
        self
    }

    /// Returns a reference to the retained sparse node updates without taking them.
    pub fn updates_ref(&self) -> Cow<'_, SparseTrieUpdates> {
        self.updates.as_ref().map_or(Cow::Owned(SparseTrieUpdates::default()), Cow::Borrowed)
    }

    /// Returns a reference to the leaf value if present.
    pub fn get_leaf_value(&self, path: &Nibbles) -> Option<&Vec<u8>> {
        self.values.get(path)
    }

    /// Takes and returns the retained sparse node updates
    pub fn take_updates(&mut self) -> SparseTrieUpdates {
        self.updates.take().unwrap_or_default()
    }

    /// Reveal the trie node only if it was not known already.
    pub fn reveal_node(
        &mut self,
        path: Nibbles,
        node: TrieNode,
        hash_mask: Option<TrieMask>,
    ) -> SparseTrieResult<()> {
        if let Some(hash_mask) = hash_mask {
            self.branch_node_hash_masks.insert(path.clone(), hash_mask);
        }

        match node {
            TrieNode::EmptyRoot => {
                debug_assert!(path.is_empty());
                self.nodes.insert(path, SparseNode::Empty);
            }
            TrieNode::Branch(branch) => {
                let mut stack_ptr = branch.as_ref().first_child_index();
                for idx in CHILD_INDEX_RANGE {
                    if branch.state_mask.is_bit_set(idx) {
                        let mut child_path = path.clone();
                        child_path.push_unchecked(idx);
                        self.reveal_node_or_hash(child_path, &branch.stack[stack_ptr])?;
                        stack_ptr += 1;
                    }
                }

                match self.nodes.entry(path) {
                    Entry::Occupied(mut entry) => match entry.get() {
                        // Blinded nodes can be replaced.
                        SparseNode::Hash(hash) => {
                            entry.insert(SparseNode::Branch {
                                state_mask: branch.state_mask,
                                // Memoize the hash of a previously blinded node in a new branch
                                // node.
                                hash: Some(*hash),
                                store_in_db_trie: None,
                            });
                        }
                        // Branch node already exists, or an extension node was placed where a
                        // branch node was before.
                        SparseNode::Branch { .. } | SparseNode::Extension { .. } => {}
                        // All other node types can't be handled.
                        node @ (SparseNode::Empty | SparseNode::Leaf { .. }) => {
                            return Err(SparseTrieErrorKind::Reveal {
                                path: entry.key().clone(),
                                node: Box::new(node.clone()),
                            }
                            .into())
                        }
                    },
                    Entry::Vacant(entry) => {
                        entry.insert(SparseNode::new_branch(branch.state_mask));
                    }
                }
            }
            TrieNode::Extension(ext) => match self.nodes.entry(path) {
                Entry::Occupied(mut entry) => match entry.get() {
                    SparseNode::Hash(hash) => {
                        let mut child_path = entry.key().clone();
                        child_path.extend_from_slice_unchecked(&ext.key);
                        entry.insert(SparseNode::Extension {
                            key: ext.key,
                            // Memoize the hash of a previously blinded node in a new extension
                            // node.
                            hash: Some(*hash),
                        });
                        self.reveal_node_or_hash(child_path, &ext.child)?;
                    }
                    // Extension node already exists, or an extension node was placed where a branch
                    // node was before.
                    SparseNode::Extension { .. } | SparseNode::Branch { .. } => {}
                    // All other node types can't be handled.
                    node @ (SparseNode::Empty | SparseNode::Leaf { .. }) => {
                        return Err(SparseTrieErrorKind::Reveal {
                            path: entry.key().clone(),
                            node: Box::new(node.clone()),
                        }
                        .into())
                    }
                },
                Entry::Vacant(entry) => {
                    let mut child_path = entry.key().clone();
                    child_path.extend_from_slice_unchecked(&ext.key);
                    entry.insert(SparseNode::new_ext(ext.key));
                    self.reveal_node_or_hash(child_path, &ext.child)?;
                }
            },
            TrieNode::Leaf(leaf) => match self.nodes.entry(path) {
                Entry::Occupied(mut entry) => match entry.get() {
                    SparseNode::Hash(hash) => {
                        let mut full = entry.key().clone();
                        full.extend_from_slice_unchecked(&leaf.key);
                        self.values.insert(full, leaf.value);
                        entry.insert(SparseNode::Leaf {
                            key: leaf.key,
                            // Memoize the hash of a previously blinded node in a new leaf
                            // node.
                            hash: Some(*hash),
                        });
                    }
                    // Left node already exists.
                    SparseNode::Leaf { .. } => {}
                    // All other node types can't be handled.
                    node @ (SparseNode::Empty |
                    SparseNode::Extension { .. } |
                    SparseNode::Branch { .. }) => {
                        return Err(SparseTrieErrorKind::Reveal {
                            path: entry.key().clone(),
                            node: Box::new(node.clone()),
                        }
                        .into())
                    }
                },
                Entry::Vacant(entry) => {
                    let mut full = entry.key().clone();
                    full.extend_from_slice_unchecked(&leaf.key);
                    entry.insert(SparseNode::new_leaf(leaf.key));
                    self.values.insert(full, leaf.value);
                }
            },
        }

        Ok(())
    }

    fn reveal_node_or_hash(&mut self, path: Nibbles, child: &[u8]) -> SparseTrieResult<()> {
        if child.len() == B256::len_bytes() + 1 {
            let hash = B256::from_slice(&child[1..]);
            match self.nodes.entry(path) {
                Entry::Occupied(entry) => match entry.get() {
                    // Hash node with a different hash can't be handled.
                    SparseNode::Hash(previous_hash) if previous_hash != &hash => {
                        return Err(SparseTrieErrorKind::Reveal {
                            path: entry.key().clone(),
                            node: Box::new(SparseNode::Hash(hash)),
                        }
                        .into())
                    }
                    _ => {}
                },
                Entry::Vacant(entry) => {
                    entry.insert(SparseNode::Hash(hash));
                }
            }
            return Ok(())
        }

        self.reveal_node(path, TrieNode::decode(&mut &child[..])?, None)
    }

    /// Traverse trie nodes down to the leaf node and collect all nodes along the path.
    fn take_nodes_for_path(&mut self, path: &Nibbles) -> SparseTrieResult<Vec<RemovedSparseNode>> {
        let mut current = Nibbles::default(); // Start traversal from the root
        let mut nodes = Vec::new(); // Collect traversed nodes

        while let Some(node) = self.nodes.remove(&current) {
            match &node {
                SparseNode::Empty => return Err(SparseTrieErrorKind::Blind.into()),
                &SparseNode::Hash(hash) => {
                    return Err(SparseTrieErrorKind::BlindedNode { path: current, hash }.into())
                }
                SparseNode::Leaf { key: _key, .. } => {
                    // Leaf node is always the one that we're deleting, and no other leaf nodes can
                    // be found during traversal.

                    #[cfg(debug_assertions)]
                    {
                        let mut current = current.clone();
                        current.extend_from_slice_unchecked(_key);
                        assert_eq!(&current, path);
                    }

                    nodes.push(RemovedSparseNode {
                        path: current.clone(),
                        node,
                        unset_branch_nibble: None,
                    });
                    break
                }
                SparseNode::Extension { key, .. } => {
                    #[cfg(debug_assertions)]
                    {
                        let mut current = current.clone();
                        current.extend_from_slice_unchecked(key);
                        assert!(
                            path.starts_with(&current),
                            "path: {:?}, current: {:?}, key: {:?}",
                            path,
                            current,
                            key
                        );
                    }

                    let path = current.clone();
                    current.extend_from_slice_unchecked(key);
                    nodes.push(RemovedSparseNode { path, node, unset_branch_nibble: None });
                }
                SparseNode::Branch { state_mask, .. } => {
                    let nibble = path[current.len()];
                    debug_assert!(
                        state_mask.is_bit_set(nibble),
                        "current: {:?}, path: {:?}, nibble: {:?}, state_mask: {:?}",
                        current,
                        path,
                        nibble,
                        state_mask
                    );

                    // If the branch node has a child that is a leaf node that we're removing,
                    // we need to unset this nibble.
                    // Any other branch nodes will not require unsetting the nibble, because
                    // deleting one leaf node can not remove the whole path
                    // where the branch node is located.
                    let mut child_path =
                        Nibbles::from_nibbles([current.as_slice(), &[nibble]].concat());
                    let unset_branch_nibble = self
                        .nodes
                        .get(&child_path)
                        .is_some_and(move |node| match node {
                            SparseNode::Leaf { key, .. } => {
                                // Get full path of the leaf node
                                child_path.extend_from_slice_unchecked(key);
                                &child_path == path
                            }
                            _ => false,
                        })
                        .then_some(nibble);

                    nodes.push(RemovedSparseNode {
                        path: current.clone(),
                        node,
                        unset_branch_nibble,
                    });

                    current.push_unchecked(nibble);
                }
            }
        }

        Ok(nodes)
    }

    /// Wipe the trie, removing all values and nodes, and replacing the root with an empty node.
    pub fn wipe(&mut self) {
        self.nodes = HashMap::from_iter([(Nibbles::default(), SparseNode::Empty)]);
        self.values = HashMap::default();
        self.prefix_set = PrefixSetMut::all();
        self.updates = self.updates.is_some().then(SparseTrieUpdates::wiped);
    }

    /// Return the root of the sparse trie.
    /// Updates all remaining dirty nodes before calculating the root.
    pub fn root(&mut self) -> B256 {
        // take the current prefix set.
        let mut prefix_set = std::mem::take(&mut self.prefix_set).freeze();
        let rlp_node = self.rlp_node_allocate(Nibbles::default(), &mut prefix_set);
        if let Some(root_hash) = rlp_node.as_hash() {
            root_hash
        } else {
            keccak256(rlp_node)
        }
    }

    /// Update hashes of the nodes that are located at a level deeper than or equal to the provided
    /// depth. Root node has a level of 0.
    pub fn update_rlp_node_level(&mut self, depth: usize) {
        let mut prefix_set = self.prefix_set.clone().freeze();
        let mut buffers = RlpNodeBuffers::default();

        let targets = self.get_changed_nodes_at_depth(&mut prefix_set, depth);
        for target in targets {
            buffers.path_stack.push((target, Some(true)));
            self.rlp_node(&mut prefix_set, &mut buffers);
        }
    }

    /// Returns a list of paths to the nodes that were changed according to the prefix set and are
    /// located at the provided depth when counting from the root node. If there's a leaf at a
    /// depth less than the provided depth, it will be included in the result.
    fn get_changed_nodes_at_depth(&self, prefix_set: &mut PrefixSet, depth: usize) -> Vec<Nibbles> {
        let mut paths = Vec::from([(Nibbles::default(), 0)]);
        let mut targets = Vec::new();

        while let Some((mut path, level)) = paths.pop() {
            match self.nodes.get(&path).unwrap() {
                SparseNode::Empty | SparseNode::Hash(_) => {}
                SparseNode::Leaf { hash, .. } => {
                    if hash.is_some() && !prefix_set.contains(&path) {
                        continue
                    }

                    targets.push(path);
                }
                SparseNode::Extension { key, hash } => {
                    if hash.is_some() && !prefix_set.contains(&path) {
                        continue
                    }

                    if level >= depth {
                        targets.push(path);
                    } else {
                        path.extend_from_slice_unchecked(key);
                        paths.push((path, level + 1));
                    }
                }
                SparseNode::Branch { state_mask, hash, .. } => {
                    if hash.is_some() && !prefix_set.contains(&path) {
                        continue
                    }

                    if level >= depth {
                        targets.push(path);
                    } else {
                        for bit in CHILD_INDEX_RANGE.rev() {
                            if state_mask.is_bit_set(bit) {
                                let mut child_path = path.clone();
                                child_path.push_unchecked(bit);
                                paths.push((child_path, level + 1));
                            }
                        }
                    }
                }
            }
        }

        targets
    }

    fn rlp_node_allocate(&mut self, path: Nibbles, prefix_set: &mut PrefixSet) -> RlpNode {
        let mut buffers = RlpNodeBuffers::new_with_path(path);
        self.rlp_node(prefix_set, &mut buffers)
    }

    fn rlp_node(&mut self, prefix_set: &mut PrefixSet, buffers: &mut RlpNodeBuffers) -> RlpNode {
        'main: while let Some((path, mut is_in_prefix_set)) = buffers.path_stack.pop() {
            // Check if the path is in the prefix set.
            // First, check the cached value. If it's `None`, then check the prefix set, and update
            // the cached value.
            let mut prefix_set_contains =
                |path: &Nibbles| *is_in_prefix_set.get_or_insert_with(|| prefix_set.contains(path));

            let (rlp_node, calculated, node_type) = match self.nodes.get_mut(&path).unwrap() {
                SparseNode::Empty => {
                    (RlpNode::word_rlp(&EMPTY_ROOT_HASH), false, SparseNodeType::Empty)
                }
                SparseNode::Hash(hash) => (RlpNode::word_rlp(hash), false, SparseNodeType::Hash),
                SparseNode::Leaf { key, hash } => {
                    let mut path = path.clone();
                    path.extend_from_slice_unchecked(key);
                    if let Some(hash) = hash.filter(|_| !prefix_set_contains(&path)) {
                        (RlpNode::word_rlp(&hash), false, SparseNodeType::Leaf)
                    } else {
                        let value = self.values.get(&path).unwrap();
                        self.rlp_buf.clear();
                        let rlp_node = LeafNodeRef { key, value }.rlp(&mut self.rlp_buf);
                        *hash = rlp_node.as_hash();
                        (rlp_node, true, SparseNodeType::Leaf)
                    }
                }
                SparseNode::Extension { key, hash } => {
                    let mut child_path = path.clone();
                    child_path.extend_from_slice_unchecked(key);
                    if let Some(hash) = hash.filter(|_| !prefix_set_contains(&path)) {
                        (
                            RlpNode::word_rlp(&hash),
                            false,
                            SparseNodeType::Extension { store_in_db_trie: true },
                        )
                    } else if buffers.rlp_node_stack.last().is_some_and(|e| e.0 == child_path) {
                        let (_, child, _, node_type) = buffers.rlp_node_stack.pop().unwrap();
                        self.rlp_buf.clear();
                        let rlp_node = ExtensionNodeRef::new(key, &child).rlp(&mut self.rlp_buf);
                        *hash = rlp_node.as_hash();

                        (
                            rlp_node,
                            true,
                            SparseNodeType::Extension {
                                // Inherit the `store_in_db_trie` flag from the child node, which is
                                // always the branch node
                                store_in_db_trie: node_type.store_in_db_trie(),
                            },
                        )
                    } else {
                        // need to get rlp node for child first
                        buffers.path_stack.extend([(path, is_in_prefix_set), (child_path, None)]);
                        continue
                    }
                }
                SparseNode::Branch { state_mask, hash, store_in_db_trie } => {
                    if let Some((hash, store_in_db_trie)) =
                        hash.zip(*store_in_db_trie).filter(|_| !prefix_set_contains(&path))
                    {
                        buffers.rlp_node_stack.push((
                            path,
                            RlpNode::word_rlp(&hash),
                            false,
                            SparseNodeType::Branch { store_in_db_trie },
                        ));
                        continue
                    }
                    let retain_updates = self.updates.is_some() && prefix_set_contains(&path);

                    buffers.branch_child_buf.clear();
                    // Walk children in a reverse order from `f` to `0`, so we pop the `0` first
                    // from the stack and keep walking in the sorted order.
                    for bit in CHILD_INDEX_RANGE.rev() {
                        if state_mask.is_bit_set(bit) {
                            let mut child = path.clone();
                            child.push_unchecked(bit);
                            buffers.branch_child_buf.push(child);
                        }
                    }

                    buffers
                        .branch_value_stack_buf
                        .resize(buffers.branch_child_buf.len(), Default::default());
                    let mut added_children = false;

                    // TODO(alexey): set the `TrieMask` bits directly
                    let mut tree_mask_values = Vec::new();
                    let mut hash_mask_values = Vec::new();
                    let mut hashes = Vec::new();
                    for (i, child_path) in buffers.branch_child_buf.iter().enumerate() {
                        if buffers.rlp_node_stack.last().is_some_and(|e| &e.0 == child_path) {
                            let (_, child, calculated, node_type) =
                                buffers.rlp_node_stack.pop().unwrap();

                            // Update the masks only if we need to retain trie updates
                            if retain_updates {
                                // Set the trie mask
                                let tree_mask_value = if node_type.store_in_db_trie() {
                                    // A branch or an extension node explicitly set the
                                    // `store_in_db_trie` flag
                                    true
                                } else {
                                    // Set the flag according to whether a child node was
                                    // pre-calculated (`calculated = false`), meaning that it wasn't
                                    // in the database
                                    !calculated
                                };
                                tree_mask_values.push(tree_mask_value);

                                // Set the hash mask. If a child node is a revealed branch node OR
                                // is a blinded node that has its hash mask bit set according to the
                                // database, set the hash mask bit and save the hash.
                                let hash = child.as_hash().filter(|_| {
                                    node_type.is_branch() ||
                                        (node_type.is_hash() &&
                                            self.branch_node_hash_masks
                                                .get(&path)
                                                .is_some_and(|mask| {
                                                    mask.is_bit_set(child_path.last().unwrap())
                                                }))
                                });
                                let hash_mask_value = hash.is_some();
                                hash_mask_values.push(hash_mask_value);
                                if let Some(hash) = hash {
                                    hashes.push(hash);
                                }

                                trace!(
                                    target: "trie::sparse",
                                    ?path,
                                    ?child_path,
                                    ?tree_mask_value,
                                    ?hash_mask_value,
                                    "Updating branch node child masks"
                                );
                            }

                            // Insert children in the resulting buffer in a normal order,
                            // because initially we iterated in reverse.
                            buffers.branch_value_stack_buf
                                [buffers.branch_child_buf.len() - i - 1] = child;
                            added_children = true;
                        } else {
                            debug_assert!(!added_children);
                            buffers.path_stack.push((path, is_in_prefix_set));
                            buffers
                                .path_stack
                                .extend(buffers.branch_child_buf.drain(..).map(|p| (p, None)));
                            continue 'main
                        }
                    }

                    self.rlp_buf.clear();
                    let branch_node_ref =
                        BranchNodeRef::new(&buffers.branch_value_stack_buf, *state_mask);
                    let rlp_node = branch_node_ref.rlp(&mut self.rlp_buf);
                    *hash = rlp_node.as_hash();

                    // Save a branch node update only if it's not a root node, and we need to
                    // persist updates.
                    let store_in_db_trie_value = if let Some(updates) =
                        self.updates.as_mut().filter(|_| retain_updates && !path.is_empty())
                    {
                        let mut tree_mask_values = tree_mask_values.into_iter().rev();
                        let mut hash_mask_values = hash_mask_values.into_iter().rev();
                        let mut tree_mask = TrieMask::default();
                        let mut hash_mask = TrieMask::default();
                        for (i, child) in branch_node_ref.children() {
                            if child.is_some() {
                                if hash_mask_values.next().unwrap() {
                                    hash_mask.set_bit(i);
                                }
                                if tree_mask_values.next().unwrap() {
                                    tree_mask.set_bit(i);
                                }
                            }
                        }

                        // Store in DB trie if there are either any children that are stored in the
                        // DB trie, or any children represent hashed values
                        let store_in_db_trie = !tree_mask.is_empty() || !hash_mask.is_empty();
                        if store_in_db_trie {
                            hashes.reverse();
                            let branch_node = BranchNodeCompact::new(
                                *state_mask,
                                tree_mask,
                                hash_mask,
                                hashes,
                                hash.filter(|_| path.len() == 0),
                            );
                            updates.updated_nodes.insert(path.clone(), branch_node);
                        }

                        store_in_db_trie
                    } else {
                        false
                    };
                    *store_in_db_trie = Some(store_in_db_trie_value);

                    (
                        rlp_node,
                        true,
                        SparseNodeType::Branch { store_in_db_trie: store_in_db_trie_value },
                    )
                }
            };
            buffers.rlp_node_stack.push((path, rlp_node, calculated, node_type));
        }

        debug_assert_eq!(buffers.rlp_node_stack.len(), 1);
        buffers.rlp_node_stack.pop().unwrap().1
    }
}

impl<P> RevealedSparseTrie<P>
where
    P: BlindedProvider,
    SparseTrieError: From<P::Error>,
{
    /// Update the leaf node with provided value.
    pub fn update_leaf(&mut self, path: Nibbles, value: Vec<u8>) -> SparseTrieResult<()> {
        self.prefix_set.insert(path.clone());
        let existing = self.values.insert(path.clone(), value);
        if existing.is_some() {
            // trie structure unchanged, return immediately
            return Ok(())
        }

        let mut current = Nibbles::default();
        while let Some(node) = self.nodes.get_mut(&current) {
            match node {
                SparseNode::Empty => {
                    *node = SparseNode::new_leaf(path);
                    break
                }
                &mut SparseNode::Hash(hash) => {
                    return Err(SparseTrieErrorKind::BlindedNode { path: current, hash }.into())
                }
                SparseNode::Leaf { key: current_key, .. } => {
                    current.extend_from_slice_unchecked(current_key);

                    // this leaf is being updated
                    if current == path {
                        unreachable!("we already checked leaf presence in the beginning");
                    }

                    // find the common prefix
                    let common = current.common_prefix_length(&path);

                    // update existing node
                    let new_ext_key = current.slice(current.len() - current_key.len()..common);
                    *node = SparseNode::new_ext(new_ext_key);

                    // create a branch node and corresponding leaves
                    self.nodes.reserve(3);
                    self.nodes.insert(
                        current.slice(..common),
                        SparseNode::new_split_branch(current[common], path[common]),
                    );
                    self.nodes.insert(
                        path.slice(..=common),
                        SparseNode::new_leaf(path.slice(common + 1..)),
                    );
                    self.nodes.insert(
                        current.slice(..=common),
                        SparseNode::new_leaf(current.slice(common + 1..)),
                    );

                    break;
                }
                SparseNode::Extension { key, .. } => {
                    current.extend_from_slice(key);

                    if !path.starts_with(&current) {
                        // find the common prefix
                        let common = current.common_prefix_length(&path);
                        *key = current.slice(current.len() - key.len()..common);

                        // If branch node updates retention is enabled, we need to query the
                        // extension node child to later set the hash mask for a parent branch node
                        // correctly.
                        if self.updates.is_some() {
                            // Check if the extension node child is a hash that needs to be revealed
                            if self.nodes.get(&current).unwrap().is_hash() {
                                if let Some(node) = self.provider.blinded_node(&current)? {
                                    let decoded = TrieNode::decode(&mut &node[..])?;
                                    trace!(target: "trie::sparse", ?current, ?decoded, "Revealing extension node child");
                                    // We'll never have to update the revealed child node, only
                                    // remove or do nothing, so
                                    // we can safely ignore the hash mask here and
                                    // pass `None`.
                                    self.reveal_node(current.clone(), decoded, None)?;
                                }
                            }
                        }

                        // create state mask for new branch node
                        // NOTE: this might overwrite the current extension node
                        self.nodes.reserve(3);
                        let branch = SparseNode::new_split_branch(current[common], path[common]);
                        self.nodes.insert(current.slice(..common), branch);

                        // create new leaf
                        let new_leaf = SparseNode::new_leaf(path.slice(common + 1..));
                        self.nodes.insert(path.slice(..=common), new_leaf);

                        // recreate extension to previous child if needed
                        let key = current.slice(common + 1..);
                        if !key.is_empty() {
                            self.nodes.insert(current.slice(..=common), SparseNode::new_ext(key));
                        }

                        break;
                    }
                }
                SparseNode::Branch { state_mask, .. } => {
                    let nibble = path[current.len()];
                    current.push_unchecked(nibble);
                    if !state_mask.is_bit_set(nibble) {
                        state_mask.set_bit(nibble);
                        let new_leaf = SparseNode::new_leaf(path.slice(current.len()..));
                        self.nodes.insert(current, new_leaf);
                        break;
                    }
                }
            };
        }

        Ok(())
    }

    /// Remove leaf node from the trie.
    pub fn remove_leaf(&mut self, path: &Nibbles) -> SparseTrieResult<()> {
        if self.values.remove(path).is_none() {
            if let Some(&SparseNode::Hash(hash)) = self.nodes.get(path) {
                // Leaf is present in the trie, but it's blinded.
                return Err(SparseTrieErrorKind::BlindedNode { path: path.clone(), hash }.into())
            }

            // Leaf is not present in the trie.
            return Ok(())
        }
        self.prefix_set.insert(path.clone());

        // If the path wasn't present in `values`, we still need to walk the trie and ensure that
        // there is no node at the path. When a leaf node is a blinded `Hash`, it will have an entry
        // in `nodes`, but not in the `values`.

        let mut removed_nodes = self.take_nodes_for_path(path)?;
        trace!(target: "trie::sparse", ?path, ?removed_nodes, "Removed nodes for path");
        // Pop the first node from the stack which is the leaf node we want to remove.
        let mut child = removed_nodes.pop().expect("leaf exists");
        #[cfg(debug_assertions)]
        {
            let mut child_path = child.path.clone();
            let SparseNode::Leaf { key, .. } = &child.node else { panic!("expected leaf node") };
            child_path.extend_from_slice_unchecked(key);
            assert_eq!(&child_path, path);
        }

        // If we don't have any other removed nodes, insert an empty node at the root.
        if removed_nodes.is_empty() {
            debug_assert!(self.nodes.is_empty());
            self.nodes.insert(Nibbles::default(), SparseNode::Empty);

            return Ok(())
        }

        // Walk the stack of removed nodes from the back and re-insert them back into the trie,
        // adjusting the node type as needed.
        while let Some(removed_node) = removed_nodes.pop() {
            let removed_path = removed_node.path;

            let new_node = match &removed_node.node {
                SparseNode::Empty => return Err(SparseTrieErrorKind::Blind.into()),
                &SparseNode::Hash(hash) => {
                    return Err(SparseTrieErrorKind::BlindedNode { path: removed_path, hash }.into())
                }
                SparseNode::Leaf { .. } => {
                    unreachable!("we already popped the leaf node")
                }
                SparseNode::Extension { key, .. } => {
                    // If the node is an extension node, we need to look at its child to see if we
                    // need to merge them.
                    match &child.node {
                        SparseNode::Empty => return Err(SparseTrieErrorKind::Blind.into()),
                        &SparseNode::Hash(hash) => {
                            return Err(
                                SparseTrieErrorKind::BlindedNode { path: child.path, hash }.into()
                            )
                        }
                        // For a leaf node, we collapse the extension node into a leaf node,
                        // extending the key. While it's impossible to encounter an extension node
                        // followed by a leaf node in a complete trie, it's possible here because we
                        // could have downgraded the extension node's child into a leaf node from
                        // another node type.
                        SparseNode::Leaf { key: leaf_key, .. } => {
                            self.nodes.remove(&child.path);

                            let mut new_key = key.clone();
                            new_key.extend_from_slice_unchecked(leaf_key);
                            SparseNode::new_leaf(new_key)
                        }
                        // For an extension node, we collapse them into one extension node,
                        // extending the key
                        SparseNode::Extension { key: extension_key, .. } => {
                            self.nodes.remove(&child.path);

                            let mut new_key = key.clone();
                            new_key.extend_from_slice_unchecked(extension_key);
                            SparseNode::new_ext(new_key)
                        }
                        // For a branch node, we just leave the extension node as-is.
                        SparseNode::Branch { .. } => removed_node.node,
                    }
                }
                SparseNode::Branch { mut state_mask, hash: _, store_in_db_trie: _ } => {
                    // If the node is a branch node, we need to check the number of children left
                    // after deleting the child at the given nibble.

                    if let Some(removed_nibble) = removed_node.unset_branch_nibble {
                        state_mask.unset_bit(removed_nibble);
                    }

                    // If only one child is left set in the branch node, we need to collapse it.
                    if state_mask.count_bits() == 1 {
                        let child_nibble =
                            state_mask.first_set_bit_index().expect("state mask is not empty");

                        // Get full path of the only child node left.
                        let mut child_path = removed_path.clone();
                        child_path.push_unchecked(child_nibble);

                        trace!(target: "trie::sparse", ?removed_path, ?child_path, ?child, "Branch node has only one child");

                        if self.nodes.get(&child_path).unwrap().is_hash() {
                            trace!(target: "trie::sparse", ?child_path, "Retrieving remaining blinded branch child");
                            if let Some(node) = self.provider.blinded_node(&child_path)? {
                                let decoded = TrieNode::decode(&mut &node[..])?;
                                trace!(target: "trie::sparse", ?child_path, ?decoded, "Revealing remaining blinded branch child");
                                // We'll never have to update the revealed branch node, only remove
                                // or do nothing, so we can safely ignore the hash mask here and
                                // pass `None`.
                                self.reveal_node(child_path.clone(), decoded, None)?;
                            }
                        }

                        // Get the only child node.
                        let child = self.nodes.get(&child_path).unwrap();

                        let mut delete_child = false;
                        let new_node = match child {
                            SparseNode::Empty => return Err(SparseTrieErrorKind::Blind.into()),
                            &SparseNode::Hash(hash) => {
                                return Err(SparseTrieErrorKind::BlindedNode {
                                    path: child_path,
                                    hash,
                                }
                                .into())
                            }
                            // If the only child is a leaf node, we downgrade the branch node into a
                            // leaf node, prepending the nibble to the key, and delete the old
                            // child.
                            SparseNode::Leaf { key, .. } => {
                                delete_child = true;

                                let mut new_key = Nibbles::from_nibbles_unchecked([child_nibble]);
                                new_key.extend_from_slice_unchecked(key);
                                SparseNode::new_leaf(new_key)
                            }
                            // If the only child node is an extension node, we downgrade the branch
                            // node into an even longer extension node, prepending the nibble to the
                            // key, and delete the old child.
                            SparseNode::Extension { key, .. } => {
                                delete_child = true;

                                let mut new_key = Nibbles::from_nibbles_unchecked([child_nibble]);
                                new_key.extend_from_slice_unchecked(key);
                                SparseNode::new_ext(new_key)
                            }
                            // If the only child is a branch node, we downgrade the current branch
                            // node into a one-nibble extension node.
                            SparseNode::Branch { .. } => {
                                SparseNode::new_ext(Nibbles::from_nibbles_unchecked([child_nibble]))
                            }
                        };

                        if delete_child {
                            self.nodes.remove(&child_path);
                        }

                        if let Some(updates) = self.updates.as_mut() {
                            updates.removed_nodes.insert(removed_path.clone());
                        }

                        new_node
                    }
                    // If more than one child is left set in the branch, we just re-insert it
                    // as-is.
                    else {
                        SparseNode::new_branch(state_mask)
                    }
                }
            };

            child = RemovedSparseNode {
                path: removed_path.clone(),
                node: new_node.clone(),
                unset_branch_nibble: None,
            };
            trace!(target: "trie::sparse", ?removed_path, ?new_node, "Re-inserting the node");
            self.nodes.insert(removed_path, new_node);
        }

        Ok(())
    }
}

/// Enum representing sparse trie node type.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum SparseNodeType {
    /// Empty trie node.
    Empty,
    /// The hash of the node that was not revealed.
    Hash,
    /// Sparse leaf node.
    Leaf,
    /// Sparse extension node.
    Extension {
        /// A flag indicating whether the extension node should be stored in the database.
        store_in_db_trie: bool,
    },
    /// Sparse branch node.
    Branch {
        /// A flag indicating whether the branch node should be stored in the database.
        store_in_db_trie: bool,
    },
}

impl SparseNodeType {
    const fn is_hash(&self) -> bool {
        matches!(self, Self::Hash)
    }

    const fn is_branch(&self) -> bool {
        matches!(self, Self::Branch { .. })
    }

    const fn store_in_db_trie(&self) -> bool {
        match *self {
            Self::Extension { store_in_db_trie } | Self::Branch { store_in_db_trie } => {
                store_in_db_trie
            }
            _ => false,
        }
    }
}

/// Enum representing trie nodes in sparse trie.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum SparseNode {
    /// Empty trie node.
    Empty,
    /// The hash of the node that was not revealed.
    Hash(B256),
    /// Sparse leaf node with remaining key suffix.
    Leaf {
        /// Remaining key suffix for the leaf node.
        key: Nibbles,
        /// Pre-computed hash of the sparse node.
        /// Can be reused unless this trie path has been updated.
        hash: Option<B256>,
    },
    /// Sparse extension node with key.
    Extension {
        /// The key slice stored by this extension node.
        key: Nibbles,
        /// Pre-computed hash of the sparse node.
        /// Can be reused unless this trie path has been updated.
        hash: Option<B256>,
    },
    /// Sparse branch node with state mask.
    Branch {
        /// The bitmask representing children present in the branch node.
        state_mask: TrieMask,
        /// Pre-computed hash of the sparse node.
        /// Can be reused unless this trie path has been updated.
        hash: Option<B256>,
        /// Pre-computed flag indicating whether the trie node should be stored in the database.
        /// Can be reused unless this trie path has been updated.
        store_in_db_trie: Option<bool>,
    },
}

impl SparseNode {
    /// Create new sparse node from [`TrieNode`].
    pub fn from_node(node: TrieNode) -> Self {
        match node {
            TrieNode::EmptyRoot => Self::Empty,
            TrieNode::Leaf(leaf) => Self::new_leaf(leaf.key),
            TrieNode::Extension(ext) => Self::new_ext(ext.key),
            TrieNode::Branch(branch) => Self::new_branch(branch.state_mask),
        }
    }

    /// Create new [`SparseNode::Branch`] from state mask.
    pub const fn new_branch(state_mask: TrieMask) -> Self {
        Self::Branch { state_mask, hash: None, store_in_db_trie: None }
    }

    /// Create new [`SparseNode::Branch`] with two bits set.
    pub const fn new_split_branch(bit_a: u8, bit_b: u8) -> Self {
        let state_mask = TrieMask::new(
            // set bits for both children
            (1u16 << bit_a) | (1u16 << bit_b),
        );
        Self::Branch { state_mask, hash: None, store_in_db_trie: None }
    }

    /// Create new [`SparseNode::Extension`] from the key slice.
    pub const fn new_ext(key: Nibbles) -> Self {
        Self::Extension { key, hash: None }
    }

    /// Create new [`SparseNode::Leaf`] from leaf key and value.
    pub const fn new_leaf(key: Nibbles) -> Self {
        Self::Leaf { key, hash: None }
    }

    /// Returns `true` if the node is a hash node.
    pub const fn is_hash(&self) -> bool {
        matches!(self, Self::Hash(_))
    }
}

#[derive(Debug)]
struct RemovedSparseNode {
    path: Nibbles,
    node: SparseNode,
    unset_branch_nibble: Option<u8>,
}

/// Collection of reusable buffers for [`RevealedSparseTrie::rlp_node`].
#[derive(Debug, Default)]
struct RlpNodeBuffers {
    /// Stack of paths we need rlp nodes for and whether the path is in the prefix set.
    path_stack: Vec<(Nibbles, Option<bool>)>,
    /// Stack of rlp nodes
    rlp_node_stack: Vec<(Nibbles, RlpNode, bool, SparseNodeType)>,
    /// Reusable branch child path
    branch_child_buf: SmallVec<[Nibbles; 16]>,
    /// Reusable branch value stack
    branch_value_stack_buf: SmallVec<[RlpNode; 16]>,
}

impl RlpNodeBuffers {
    /// Creates a new instance of buffers with the given path on the stack.
    fn new_with_path(path: Nibbles) -> Self {
        Self {
            path_stack: vec![(path, None)],
            rlp_node_stack: Vec::new(),
            branch_child_buf: SmallVec::<[Nibbles; 16]>::new_const(),
            branch_value_stack_buf: SmallVec::<[RlpNode; 16]>::new_const(),
        }
    }
}

/// The aggregation of sparse trie updates.
#[derive(Debug, Clone, Default, PartialEq, Eq)]
pub struct SparseTrieUpdates {
    pub(crate) updated_nodes: HashMap<Nibbles, BranchNodeCompact>,
    pub(crate) removed_nodes: HashSet<Nibbles>,
    pub(crate) wiped: bool,
}

impl SparseTrieUpdates {
    /// Create new wiped sparse trie updates.
    pub fn wiped() -> Self {
        Self { wiped: true, ..Default::default() }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloy_primitives::{
        map::{B256HashSet, HashSet},
        U256,
    };
    use alloy_rlp::Encodable;
    use assert_matches::assert_matches;
    use itertools::Itertools;
    use prop::sample::SizeRange;
    use proptest::prelude::*;
    use proptest_arbitrary_interop::arb;
    use rand::seq::IteratorRandom;
    use reth_primitives_traits::Account;
    use reth_trie::{
        hashed_cursor::{noop::NoopHashedAccountCursor, HashedPostStateAccountCursor},
        node_iter::{TrieElement, TrieNodeIter},
        trie_cursor::noop::NoopAccountTrieCursor,
        updates::TrieUpdates,
        walker::TrieWalker,
        BranchNode, ExtensionNode, HashedPostState, LeafNode,
    };
    use reth_trie_common::{
        proof::{ProofNodes, ProofRetainer},
        HashBuilder,
    };
    use std::collections::BTreeMap;

    /// Pad nibbles to the length of a B256 hash with zeros on the left.
    fn pad_nibbles_left(nibbles: Nibbles) -> Nibbles {
        let mut base =
            Nibbles::from_nibbles_unchecked(vec![0; B256::len_bytes() * 2 - nibbles.len()]);
        base.extend_from_slice_unchecked(&nibbles);
        base
    }

    /// Pad nibbles to the length of a B256 hash with zeros on the right.
    fn pad_nibbles_right(mut nibbles: Nibbles) -> Nibbles {
        nibbles.extend_from_slice_unchecked(&vec![0; B256::len_bytes() * 2 - nibbles.len()]);
        nibbles
    }

    /// Calculate the state root by feeding the provided state to the hash builder and retaining the
    /// proofs for the provided targets.
    ///
    /// Returns the state root and the retained proof nodes.
    fn run_hash_builder(
        state: impl IntoIterator<Item = (Nibbles, Account)> + Clone,
        destroyed_accounts: B256HashSet,
        proof_targets: impl IntoIterator<Item = Nibbles>,
    ) -> (B256, TrieUpdates, ProofNodes, HashMap<Nibbles, TrieMask>) {
        let mut account_rlp = Vec::new();

        let mut hash_builder = HashBuilder::default()
            .with_updates(true)
            .with_proof_retainer(ProofRetainer::from_iter(proof_targets));

        let mut prefix_set = PrefixSetMut::default();
        prefix_set.extend_keys(state.clone().into_iter().map(|(nibbles, _)| nibbles));
        let walker = TrieWalker::new(NoopAccountTrieCursor::default(), prefix_set.freeze())
            .with_deletions_retained(true);
        let hashed_post_state = HashedPostState::default()
            .with_accounts(state.into_iter().map(|(nibbles, account)| {
                (nibbles.pack().into_inner().unwrap().into(), Some(account))
            }))
            .into_sorted();
        let mut node_iter = TrieNodeIter::new(
            walker,
            HashedPostStateAccountCursor::new(
                NoopHashedAccountCursor::default(),
                hashed_post_state.accounts(),
            ),
        );

        while let Some(node) = node_iter.try_next().unwrap() {
            match node {
                TrieElement::Branch(branch) => {
                    hash_builder.add_branch(branch.key, branch.value, branch.children_are_in_trie);
                }
                TrieElement::Leaf(key, account) => {
                    let account = account.into_trie_account(EMPTY_ROOT_HASH);
                    account.encode(&mut account_rlp);

                    hash_builder.add_leaf(Nibbles::unpack(key), &account_rlp);
                    account_rlp.clear();
                }
            }
        }
        let root = hash_builder.root();
        let proof_nodes = hash_builder.take_proof_nodes();
        let branch_node_hash_masks = hash_builder
            .updated_branch_nodes
            .clone()
            .unwrap_or_default()
            .iter()
            .map(|(path, node)| (path.clone(), node.hash_mask))
            .collect();

        let mut trie_updates = TrieUpdates::default();
        let removed_keys = node_iter.walker.take_removed_keys();
        trie_updates.finalize(hash_builder, removed_keys, destroyed_accounts);

        (root, trie_updates, proof_nodes, branch_node_hash_masks)
    }

    /// Assert that the sparse trie nodes and the proof nodes from the hash builder are equal.
    fn assert_eq_sparse_trie_proof_nodes(
        sparse_trie: &RevealedSparseTrie,
        proof_nodes: ProofNodes,
    ) {
        let proof_nodes = proof_nodes
            .into_nodes_sorted()
            .into_iter()
            .map(|(path, node)| (path, TrieNode::decode(&mut node.as_ref()).unwrap()));

        let sparse_nodes = sparse_trie.nodes.iter().sorted_by_key(|(path, _)| *path);

        for ((proof_node_path, proof_node), (sparse_node_path, sparse_node)) in
            proof_nodes.zip(sparse_nodes)
        {
            assert_eq!(&proof_node_path, sparse_node_path);

            let equals = match (&proof_node, &sparse_node) {
                // Both nodes are empty
                (TrieNode::EmptyRoot, SparseNode::Empty) => true,
                // Both nodes are branches and have the same state mask
                (
                    TrieNode::Branch(BranchNode { state_mask: proof_state_mask, .. }),
                    SparseNode::Branch { state_mask: sparse_state_mask, .. },
                ) => proof_state_mask == sparse_state_mask,
                // Both nodes are extensions and have the same key
                (
                    TrieNode::Extension(ExtensionNode { key: proof_key, .. }),
                    SparseNode::Extension { key: sparse_key, .. },
                ) |
                // Both nodes are leaves and have the same key
                (
                    TrieNode::Leaf(LeafNode { key: proof_key, .. }),
                    SparseNode::Leaf { key: sparse_key, .. },
                ) => proof_key == sparse_key,
                // Empty and hash nodes are specific to the sparse trie, skip them
                (_, SparseNode::Empty | SparseNode::Hash(_)) => continue,
                _ => false,
            };
            assert!(equals, "proof node: {:?}, sparse node: {:?}", proof_node, sparse_node);
        }
    }

    #[test]
    fn sparse_trie_is_blind() {
        assert!(SparseTrie::blind().is_blind());
        assert!(!SparseTrie::revealed_empty().is_blind());
    }

    #[test]
    fn sparse_trie_empty_update_one() {
        let key = Nibbles::unpack(B256::with_last_byte(42));
        let value = || Account::default();
        let value_encoded = || {
            let mut account_rlp = Vec::new();
            value().into_trie_account(EMPTY_ROOT_HASH).encode(&mut account_rlp);
            account_rlp
        };

        let (hash_builder_root, hash_builder_updates, hash_builder_proof_nodes, _) =
            run_hash_builder([(key.clone(), value())], Default::default(), [key.clone()]);

        let mut sparse = RevealedSparseTrie::default().with_updates(true);
        sparse.update_leaf(key, value_encoded()).unwrap();
        let sparse_root = sparse.root();
        let sparse_updates = sparse.take_updates();

        assert_eq!(sparse_root, hash_builder_root);
        assert_eq!(sparse_updates.updated_nodes, hash_builder_updates.account_nodes);
        assert_eq_sparse_trie_proof_nodes(&sparse, hash_builder_proof_nodes);
    }

    #[test]
    fn sparse_trie_empty_update_multiple_lower_nibbles() {
        reth_tracing::init_test_tracing();

        let paths = (0..=16).map(|b| Nibbles::unpack(B256::with_last_byte(b))).collect::<Vec<_>>();
        let value = || Account::default();
        let value_encoded = || {
            let mut account_rlp = Vec::new();
            value().into_trie_account(EMPTY_ROOT_HASH).encode(&mut account_rlp);
            account_rlp
        };

        let (hash_builder_root, hash_builder_updates, hash_builder_proof_nodes, _) =
            run_hash_builder(
                paths.iter().cloned().zip(std::iter::repeat_with(value)),
                Default::default(),
                paths.clone(),
            );

        let mut sparse = RevealedSparseTrie::default().with_updates(true);
        for path in &paths {
            sparse.update_leaf(path.clone(), value_encoded()).unwrap();
        }
        let sparse_root = sparse.root();
        let sparse_updates = sparse.take_updates();

        assert_eq!(sparse_root, hash_builder_root);
        assert_eq!(sparse_updates.updated_nodes, hash_builder_updates.account_nodes);
        assert_eq_sparse_trie_proof_nodes(&sparse, hash_builder_proof_nodes);
    }

    #[test]
    fn sparse_trie_empty_update_multiple_upper_nibbles() {
        let paths = (239..=255).map(|b| Nibbles::unpack(B256::repeat_byte(b))).collect::<Vec<_>>();
        let value = || Account::default();
        let value_encoded = || {
            let mut account_rlp = Vec::new();
            value().into_trie_account(EMPTY_ROOT_HASH).encode(&mut account_rlp);
            account_rlp
        };

        let (hash_builder_root, hash_builder_updates, hash_builder_proof_nodes, _) =
            run_hash_builder(
                paths.iter().cloned().zip(std::iter::repeat_with(value)),
                Default::default(),
                paths.clone(),
            );

        let mut sparse = RevealedSparseTrie::default().with_updates(true);
        for path in &paths {
            sparse.update_leaf(path.clone(), value_encoded()).unwrap();
        }
        let sparse_root = sparse.root();
        let sparse_updates = sparse.take_updates();

        assert_eq!(sparse_root, hash_builder_root);
        assert_eq!(sparse_updates.updated_nodes, hash_builder_updates.account_nodes);
        assert_eq_sparse_trie_proof_nodes(&sparse, hash_builder_proof_nodes);
    }

    #[test]
    fn sparse_trie_empty_update_multiple() {
        let paths = (0..=255)
            .map(|b| {
                Nibbles::unpack(if b % 2 == 0 {
                    B256::repeat_byte(b)
                } else {
                    B256::with_last_byte(b)
                })
            })
            .collect::<Vec<_>>();
        let value = || Account::default();
        let value_encoded = || {
            let mut account_rlp = Vec::new();
            value().into_trie_account(EMPTY_ROOT_HASH).encode(&mut account_rlp);
            account_rlp
        };

        let (hash_builder_root, hash_builder_updates, hash_builder_proof_nodes, _) =
            run_hash_builder(
                paths.iter().sorted_unstable().cloned().zip(std::iter::repeat_with(value)),
                Default::default(),
                paths.clone(),
            );

        let mut sparse = RevealedSparseTrie::default().with_updates(true);
        for path in &paths {
            sparse.update_leaf(path.clone(), value_encoded()).unwrap();
        }
        let sparse_root = sparse.root();
        let sparse_updates = sparse.take_updates();

        assert_eq!(sparse_root, hash_builder_root);
        pretty_assertions::assert_eq!(
            BTreeMap::from_iter(sparse_updates.updated_nodes),
            BTreeMap::from_iter(hash_builder_updates.account_nodes)
        );
        assert_eq_sparse_trie_proof_nodes(&sparse, hash_builder_proof_nodes);
    }

    #[test]
    fn sparse_trie_empty_update_repeated() {
        let paths = (0..=255).map(|b| Nibbles::unpack(B256::repeat_byte(b))).collect::<Vec<_>>();
        let old_value = Account { nonce: 1, ..Default::default() };
        let old_value_encoded = {
            let mut account_rlp = Vec::new();
            old_value.into_trie_account(EMPTY_ROOT_HASH).encode(&mut account_rlp);
            account_rlp
        };
        let new_value = Account { nonce: 2, ..Default::default() };
        let new_value_encoded = {
            let mut account_rlp = Vec::new();
            new_value.into_trie_account(EMPTY_ROOT_HASH).encode(&mut account_rlp);
            account_rlp
        };

        let (hash_builder_root, hash_builder_updates, hash_builder_proof_nodes, _) =
            run_hash_builder(
                paths.iter().cloned().zip(std::iter::repeat_with(|| old_value)),
                Default::default(),
                paths.clone(),
            );

        let mut sparse = RevealedSparseTrie::default().with_updates(true);
        for path in &paths {
            sparse.update_leaf(path.clone(), old_value_encoded.clone()).unwrap();
        }
        let sparse_root = sparse.root();
        let sparse_updates = sparse.updates_ref();

        assert_eq!(sparse_root, hash_builder_root);
        assert_eq!(sparse_updates.updated_nodes, hash_builder_updates.account_nodes);
        assert_eq_sparse_trie_proof_nodes(&sparse, hash_builder_proof_nodes);

        let (hash_builder_root, hash_builder_updates, hash_builder_proof_nodes, _) =
            run_hash_builder(
                paths.iter().cloned().zip(std::iter::repeat_with(|| new_value)),
                Default::default(),
                paths.clone(),
            );

        for path in &paths {
            sparse.update_leaf(path.clone(), new_value_encoded.clone()).unwrap();
        }
        let sparse_root = sparse.root();
        let sparse_updates = sparse.take_updates();

        assert_eq!(sparse_root, hash_builder_root);
        assert_eq!(sparse_updates.updated_nodes, hash_builder_updates.account_nodes);
        assert_eq_sparse_trie_proof_nodes(&sparse, hash_builder_proof_nodes);
    }

    #[test]
    fn sparse_trie_remove_leaf() {
        reth_tracing::init_test_tracing();

        let mut sparse = RevealedSparseTrie::default();

        let value = alloy_rlp::encode_fixed_size(&U256::ZERO).to_vec();

        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x0, 0x2, 0x3, 0x1]), value.clone())
            .unwrap();
        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x0, 0x2, 0x3, 0x3]), value.clone())
            .unwrap();
        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x2, 0x0, 0x1, 0x3]), value.clone())
            .unwrap();
        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x3, 0x1, 0x0, 0x2]), value.clone())
            .unwrap();
        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x0, 0x2]), value.clone())
            .unwrap();
        sparse.update_leaf(Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x2, 0x0]), value).unwrap();

        // Extension (Key = 5)
        // └── Branch (Mask = 1011)
        //     ├── 0 -> Extension (Key = 23)
        //     │        └── Branch (Mask = 0101)
        //     │              ├── 1 -> Leaf (Key = 1, Path = 50231)
        //     │              └── 3 -> Leaf (Key = 3, Path = 50233)
        //     ├── 2 -> Leaf (Key = 013, Path = 52013)
        //     └── 3 -> Branch (Mask = 0101)
        //                ├── 1 -> Leaf (Key = 3102, Path = 53102)
        //                └── 3 -> Branch (Mask = 1010)
        //                       ├── 0 -> Leaf (Key = 3302, Path = 53302)
        //                       └── 2 -> Leaf (Key = 3320, Path = 53320)
        pretty_assertions::assert_eq!(
            sparse.nodes.clone().into_iter().collect::<BTreeMap<_, _>>(),
            BTreeMap::from_iter([
                (Nibbles::default(), SparseNode::new_ext(Nibbles::from_nibbles([0x5]))),
                (Nibbles::from_nibbles([0x5]), SparseNode::new_branch(0b1101.into())),
                (
                    Nibbles::from_nibbles([0x5, 0x0]),
                    SparseNode::new_ext(Nibbles::from_nibbles([0x2, 0x3]))
                ),
                (
                    Nibbles::from_nibbles([0x5, 0x0, 0x2, 0x3]),
                    SparseNode::new_branch(0b1010.into())
                ),
                (
                    Nibbles::from_nibbles([0x5, 0x0, 0x2, 0x3, 0x1]),
                    SparseNode::new_leaf(Nibbles::default())
                ),
                (
                    Nibbles::from_nibbles([0x5, 0x0, 0x2, 0x3, 0x3]),
                    SparseNode::new_leaf(Nibbles::default())
                ),
                (
                    Nibbles::from_nibbles([0x5, 0x2]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x0, 0x1, 0x3]))
                ),
                (Nibbles::from_nibbles([0x5, 0x3]), SparseNode::new_branch(0b1010.into())),
                (
                    Nibbles::from_nibbles([0x5, 0x3, 0x1]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x0, 0x2]))
                ),
                (Nibbles::from_nibbles([0x5, 0x3, 0x3]), SparseNode::new_branch(0b0101.into())),
                (
                    Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x0]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x2]))
                ),
                (
                    Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x2]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x0]))
                )
            ])
        );

        sparse.remove_leaf(&Nibbles::from_nibbles([0x5, 0x2, 0x0, 0x1, 0x3])).unwrap();

        // Extension (Key = 5)
        // └── Branch (Mask = 1001)
        //     ├── 0 -> Extension (Key = 23)
        //     │        └── Branch (Mask = 0101)
        //     │              ├── 1 -> Leaf (Key = 0231, Path = 50231)
        //     │              └── 3 -> Leaf (Key = 0233, Path = 50233)
        //     └── 3 -> Branch (Mask = 0101)
        //                ├── 1 -> Leaf (Key = 3102, Path = 53102)
        //                └── 3 -> Branch (Mask = 1010)
        //                       ├── 0 -> Leaf (Key = 3302, Path = 53302)
        //                       └── 2 -> Leaf (Key = 3320, Path = 53320)
        pretty_assertions::assert_eq!(
            sparse.nodes.clone().into_iter().collect::<BTreeMap<_, _>>(),
            BTreeMap::from_iter([
                (Nibbles::default(), SparseNode::new_ext(Nibbles::from_nibbles([0x5]))),
                (Nibbles::from_nibbles([0x5]), SparseNode::new_branch(0b1001.into())),
                (
                    Nibbles::from_nibbles([0x5, 0x0]),
                    SparseNode::new_ext(Nibbles::from_nibbles([0x2, 0x3]))
                ),
                (
                    Nibbles::from_nibbles([0x5, 0x0, 0x2, 0x3]),
                    SparseNode::new_branch(0b1010.into())
                ),
                (
                    Nibbles::from_nibbles([0x5, 0x0, 0x2, 0x3, 0x1]),
                    SparseNode::new_leaf(Nibbles::default())
                ),
                (
                    Nibbles::from_nibbles([0x5, 0x0, 0x2, 0x3, 0x3]),
                    SparseNode::new_leaf(Nibbles::default())
                ),
                (Nibbles::from_nibbles([0x5, 0x3]), SparseNode::new_branch(0b1010.into())),
                (
                    Nibbles::from_nibbles([0x5, 0x3, 0x1]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x0, 0x2]))
                ),
                (Nibbles::from_nibbles([0x5, 0x3, 0x3]), SparseNode::new_branch(0b0101.into())),
                (
                    Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x0]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x2]))
                ),
                (
                    Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x2]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x0]))
                )
            ])
        );

        sparse.remove_leaf(&Nibbles::from_nibbles([0x5, 0x0, 0x2, 0x3, 0x1])).unwrap();

        // Extension (Key = 5)
        // └── Branch (Mask = 1001)
        //     ├── 0 -> Leaf (Key = 0233, Path = 50233)
        //     └── 3 -> Branch (Mask = 0101)
        //                ├── 1 -> Leaf (Key = 3102, Path = 53102)
        //                └── 3 -> Branch (Mask = 1010)
        //                       ├── 0 -> Leaf (Key = 3302, Path = 53302)
        //                       └── 2 -> Leaf (Key = 3320, Path = 53320)
        pretty_assertions::assert_eq!(
            sparse.nodes.clone().into_iter().collect::<BTreeMap<_, _>>(),
            BTreeMap::from_iter([
                (Nibbles::default(), SparseNode::new_ext(Nibbles::from_nibbles([0x5]))),
                (Nibbles::from_nibbles([0x5]), SparseNode::new_branch(0b1001.into())),
                (
                    Nibbles::from_nibbles([0x5, 0x0]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x2, 0x3, 0x3]))
                ),
                (Nibbles::from_nibbles([0x5, 0x3]), SparseNode::new_branch(0b1010.into())),
                (
                    Nibbles::from_nibbles([0x5, 0x3, 0x1]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x0, 0x2]))
                ),
                (Nibbles::from_nibbles([0x5, 0x3, 0x3]), SparseNode::new_branch(0b0101.into())),
                (
                    Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x0]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x2]))
                ),
                (
                    Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x2]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x0]))
                )
            ])
        );

        sparse.remove_leaf(&Nibbles::from_nibbles([0x5, 0x3, 0x1, 0x0, 0x2])).unwrap();

        // Extension (Key = 5)
        // └── Branch (Mask = 1001)
        //     ├── 0 -> Leaf (Key = 0233, Path = 50233)
        //     └── 3 -> Branch (Mask = 1010)
        //                ├── 0 -> Leaf (Key = 3302, Path = 53302)
        //                └── 2 -> Leaf (Key = 3320, Path = 53320)
        pretty_assertions::assert_eq!(
            sparse.nodes.clone().into_iter().collect::<BTreeMap<_, _>>(),
            BTreeMap::from_iter([
                (Nibbles::default(), SparseNode::new_ext(Nibbles::from_nibbles([0x5]))),
                (Nibbles::from_nibbles([0x5]), SparseNode::new_branch(0b1001.into())),
                (
                    Nibbles::from_nibbles([0x5, 0x0]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x2, 0x3, 0x3]))
                ),
                (
                    Nibbles::from_nibbles([0x5, 0x3]),
                    SparseNode::new_ext(Nibbles::from_nibbles([0x3]))
                ),
                (Nibbles::from_nibbles([0x5, 0x3, 0x3]), SparseNode::new_branch(0b0101.into())),
                (
                    Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x0]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x2]))
                ),
                (
                    Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x2]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x0]))
                )
            ])
        );

        sparse.remove_leaf(&Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x2, 0x0])).unwrap();

        // Extension (Key = 5)
        // └── Branch (Mask = 1001)
        //     ├── 0 -> Leaf (Key = 0233, Path = 50233)
        //     └── 3 -> Leaf (Key = 3302, Path = 53302)
        pretty_assertions::assert_eq!(
            sparse.nodes.clone().into_iter().collect::<BTreeMap<_, _>>(),
            BTreeMap::from_iter([
                (Nibbles::default(), SparseNode::new_ext(Nibbles::from_nibbles([0x5]))),
                (Nibbles::from_nibbles([0x5]), SparseNode::new_branch(0b1001.into())),
                (
                    Nibbles::from_nibbles([0x5, 0x0]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x2, 0x3, 0x3]))
                ),
                (
                    Nibbles::from_nibbles([0x5, 0x3]),
                    SparseNode::new_leaf(Nibbles::from_nibbles([0x3, 0x0, 0x2]))
                ),
            ])
        );

        sparse.remove_leaf(&Nibbles::from_nibbles([0x5, 0x0, 0x2, 0x3, 0x3])).unwrap();

        // Leaf (Key = 53302)
        pretty_assertions::assert_eq!(
            sparse.nodes.clone().into_iter().collect::<BTreeMap<_, _>>(),
            BTreeMap::from_iter([(
                Nibbles::default(),
                SparseNode::new_leaf(Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x0, 0x2]))
            ),])
        );

        sparse.remove_leaf(&Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x0, 0x2])).unwrap();

        // Empty
        pretty_assertions::assert_eq!(
            sparse.nodes.clone().into_iter().collect::<BTreeMap<_, _>>(),
            BTreeMap::from_iter([(Nibbles::default(), SparseNode::Empty)])
        );
    }

    #[test]
    fn sparse_trie_remove_leaf_blinded() {
        let leaf = LeafNode::new(
            Nibbles::default(),
            alloy_rlp::encode_fixed_size(&U256::from(1)).to_vec(),
        );
        let branch = TrieNode::Branch(BranchNode::new(
            vec![
                RlpNode::word_rlp(&B256::repeat_byte(1)),
                RlpNode::from_raw_rlp(&alloy_rlp::encode(leaf.clone())).unwrap(),
            ],
            TrieMask::new(0b11),
        ));

        let mut sparse =
            RevealedSparseTrie::from_root(branch.clone(), Some(TrieMask::new(0b01)), false)
                .unwrap();

        // Reveal a branch node and one of its children
        //
        // Branch (Mask = 11)
        // ├── 0 -> Hash (Path = 0)
        // └── 1 -> Leaf (Path = 1)
        sparse.reveal_node(Nibbles::default(), branch, Some(TrieMask::new(0b01))).unwrap();
        sparse.reveal_node(Nibbles::from_nibbles([0x1]), TrieNode::Leaf(leaf), None).unwrap();

        // Removing a blinded leaf should result in an error
        assert_matches!(
            sparse.remove_leaf(&Nibbles::from_nibbles([0x0])).map_err(|e| e.into_kind()),
            Err(SparseTrieErrorKind::BlindedNode { path, hash }) if path == Nibbles::from_nibbles([0x0]) && hash == B256::repeat_byte(1)
        );
    }

    #[test]
    fn sparse_trie_remove_leaf_non_existent() {
        let leaf = LeafNode::new(
            Nibbles::default(),
            alloy_rlp::encode_fixed_size(&U256::from(1)).to_vec(),
        );
        let branch = TrieNode::Branch(BranchNode::new(
            vec![
                RlpNode::word_rlp(&B256::repeat_byte(1)),
                RlpNode::from_raw_rlp(&alloy_rlp::encode(leaf.clone())).unwrap(),
            ],
            TrieMask::new(0b11),
        ));

        let mut sparse =
            RevealedSparseTrie::from_root(branch.clone(), Some(TrieMask::new(0b01)), false)
                .unwrap();

        // Reveal a branch node and one of its children
        //
        // Branch (Mask = 11)
        // ├── 0 -> Hash (Path = 0)
        // └── 1 -> Leaf (Path = 1)
        sparse.reveal_node(Nibbles::default(), branch, Some(TrieMask::new(0b01))).unwrap();
        sparse.reveal_node(Nibbles::from_nibbles([0x1]), TrieNode::Leaf(leaf), None).unwrap();

        // Removing a non-existent leaf should be a noop
        let sparse_old = sparse.clone();
        assert_matches!(sparse.remove_leaf(&Nibbles::from_nibbles([0x2])), Ok(()));
        assert_eq!(sparse, sparse_old);
    }

    #[allow(clippy::type_complexity)]
    #[test]
    fn sparse_trie_fuzz() {
        // Having only the first 3 nibbles set, we narrow down the range of keys
        // to 4096 different hashes. It allows us to generate collisions more likely
        // to test the sparse trie updates.
        const KEY_NIBBLES_LEN: usize = 3;

        fn test(updates: Vec<(HashMap<Nibbles, Account>, HashSet<Nibbles>)>) {
            {
                let mut state = BTreeMap::default();
                let mut sparse = RevealedSparseTrie::default().with_updates(true);

                for (update, keys_to_delete) in updates {
                    // Insert state updates into the sparse trie and calculate the root
                    for (key, account) in update.clone() {
                        let account = account.into_trie_account(EMPTY_ROOT_HASH);
                        let mut account_rlp = Vec::new();
                        account.encode(&mut account_rlp);
                        sparse.update_leaf(key, account_rlp).unwrap();
                    }
                    // We need to clone the sparse trie, so that all updated branch nodes are
                    // preserved, and not only those that were changed after the last call to
                    // `root()`.
                    let mut updated_sparse = sparse.clone();
                    let sparse_root = updated_sparse.root();
                    let sparse_updates = updated_sparse.take_updates();

                    // Insert state updates into the hash builder and calculate the root
                    state.extend(update);
                    let (hash_builder_root, hash_builder_updates, hash_builder_proof_nodes, _) =
                        run_hash_builder(
                            state.clone(),
                            Default::default(),
                            state.keys().cloned().collect::<Vec<_>>(),
                        );

                    // Assert that the sparse trie root matches the hash builder root
                    assert_eq!(sparse_root, hash_builder_root);
                    // Assert that the sparse trie updates match the hash builder updates
                    pretty_assertions::assert_eq!(
                        sparse_updates.updated_nodes,
                        hash_builder_updates.account_nodes
                    );
                    // Assert that the sparse trie nodes match the hash builder proof nodes
                    assert_eq_sparse_trie_proof_nodes(&updated_sparse, hash_builder_proof_nodes);

                    // Delete some keys from both the hash builder and the sparse trie and check
                    // that the sparse trie root still matches the hash builder root
                    for key in keys_to_delete {
                        state.remove(&key).unwrap();
                        sparse.remove_leaf(&key).unwrap();
                    }

                    // We need to clone the sparse trie, so that all updated branch nodes are
                    // preserved, and not only those that were changed after the last call to
                    // `root()`.
                    let mut updated_sparse = sparse.clone();
                    let sparse_root = updated_sparse.root();
                    let sparse_updates = updated_sparse.take_updates();

                    let (hash_builder_root, hash_builder_updates, hash_builder_proof_nodes, _) =
                        run_hash_builder(
                            state.clone(),
                            Default::default(),
                            state.keys().cloned().collect::<Vec<_>>(),
                        );

                    // Assert that the sparse trie root matches the hash builder root
                    assert_eq!(sparse_root, hash_builder_root);
                    // Assert that the sparse trie updates match the hash builder updates
                    pretty_assertions::assert_eq!(
                        sparse_updates.updated_nodes,
                        hash_builder_updates.account_nodes
                    );
                    // Assert that the sparse trie nodes match the hash builder proof nodes
                    assert_eq_sparse_trie_proof_nodes(&updated_sparse, hash_builder_proof_nodes);
                }
            }
        }

        fn transform_updates(
            updates: Vec<HashMap<Nibbles, Account>>,
            mut rng: impl Rng,
        ) -> Vec<(HashMap<Nibbles, Account>, HashSet<Nibbles>)> {
            let mut keys = HashSet::new();
            updates
                .into_iter()
                .map(|update| {
                    keys.extend(update.keys().cloned());

                    let keys_to_delete_len = update.len() / 2;
                    let keys_to_delete = (0..keys_to_delete_len)
                        .map(|_| {
                            let key = keys.iter().choose(&mut rng).unwrap().clone();
                            keys.take(&key).unwrap()
                        })
                        .collect();

                    (update, keys_to_delete)
                })
                .collect::<Vec<_>>()
        }

        proptest!(ProptestConfig::with_cases(10), |(
            updates in proptest::collection::vec(
                proptest::collection::hash_map(
                    any_with::<Nibbles>(SizeRange::new(KEY_NIBBLES_LEN..=KEY_NIBBLES_LEN)).prop_map(pad_nibbles_right),
                    arb::<Account>(),
                    1..100,
                ).prop_map(HashMap::from_iter),
                1..100,
            ).prop_perturb(transform_updates)
        )| {
            test(updates)
        });
    }

    /// We have three leaves that share the same prefix: 0x00, 0x01 and 0x02. Hash builder trie has
    /// only nodes 0x00 and 0x01, and we have proofs for them. Node B is new and inserted in the
    /// sparse trie first.
    ///
    /// 1. Reveal the hash builder proof to leaf 0x00 in the sparse trie.
    /// 2. Insert leaf 0x01 into the sparse trie.
    /// 3. Reveal the hash builder proof to leaf 0x02 in the sparse trie.
    ///
    /// The hash builder proof to the leaf 0x02 didn't have the leaf 0x01 at the corresponding
    /// nibble of the branch node, so we need to adjust the branch node instead of fully
    /// replacing it.
    #[test]
    fn sparse_trie_reveal_node_1() {
        let key1 = || pad_nibbles_right(Nibbles::from_nibbles_unchecked([0x00]));
        let key2 = || pad_nibbles_right(Nibbles::from_nibbles_unchecked([0x01]));
        let key3 = || pad_nibbles_right(Nibbles::from_nibbles_unchecked([0x02]));
        let value = || Account::default();
        let value_encoded = || {
            let mut account_rlp = Vec::new();
            value().into_trie_account(EMPTY_ROOT_HASH).encode(&mut account_rlp);
            account_rlp
        };

        // Generate the proof for the root node and initialize the sparse trie with it
        let (_, _, hash_builder_proof_nodes, branch_node_hash_masks) = run_hash_builder(
            [(key1(), value()), (key3(), value())],
            Default::default(),
            [Nibbles::default()],
        );
        let mut sparse = RevealedSparseTrie::from_root(
            TrieNode::decode(&mut &hash_builder_proof_nodes.nodes_sorted()[0].1[..]).unwrap(),
            branch_node_hash_masks.get(&Nibbles::default()).copied(),
            false,
        )
        .unwrap();

        // Generate the proof for the first key and reveal it in the sparse trie
        let (_, _, hash_builder_proof_nodes, branch_node_hash_masks) =
            run_hash_builder([(key1(), value()), (key3(), value())], Default::default(), [key1()]);
        for (path, node) in hash_builder_proof_nodes.nodes_sorted() {
            let hash_mask = branch_node_hash_masks.get(&path).copied();
            sparse.reveal_node(path, TrieNode::decode(&mut &node[..]).unwrap(), hash_mask).unwrap();
        }

        // Check that the branch node exists with only two nibbles set
        assert_eq!(
            sparse.nodes.get(&Nibbles::default()),
            Some(&SparseNode::new_branch(0b101.into()))
        );

        // Insert the leaf for the second key
        sparse.update_leaf(key2(), value_encoded()).unwrap();

        // Check that the branch node was updated and another nibble was set
        assert_eq!(
            sparse.nodes.get(&Nibbles::default()),
            Some(&SparseNode::new_branch(0b111.into()))
        );

        // Generate the proof for the third key and reveal it in the sparse trie
        let (_, _, hash_builder_proof_nodes, branch_node_hash_masks) =
            run_hash_builder([(key1(), value()), (key3(), value())], Default::default(), [key3()]);
        for (path, node) in hash_builder_proof_nodes.nodes_sorted() {
            let hash_mask = branch_node_hash_masks.get(&path).copied();
            sparse.reveal_node(path, TrieNode::decode(&mut &node[..]).unwrap(), hash_mask).unwrap();
        }

        // Check that nothing changed in the branch node
        assert_eq!(
            sparse.nodes.get(&Nibbles::default()),
            Some(&SparseNode::new_branch(0b111.into()))
        );

        // Generate the nodes for the full trie with all three key using the hash builder, and
        // compare them to the sparse trie
        let (_, _, hash_builder_proof_nodes, _) = run_hash_builder(
            [(key1(), value()), (key2(), value()), (key3(), value())],
            Default::default(),
            [key1(), key2(), key3()],
        );

        assert_eq_sparse_trie_proof_nodes(&sparse, hash_builder_proof_nodes);
    }

    /// We have three leaves: 0x0000, 0x0101, and 0x0102. Hash builder trie has all nodes, and we
    /// have proofs for them.
    ///
    /// 1. Reveal the hash builder proof to leaf 0x00 in the sparse trie.
    /// 2. Remove leaf 0x00 from the sparse trie (that will remove the branch node and create an
    ///    extension node with the key 0x0000).
    /// 3. Reveal the hash builder proof to leaf 0x0101 in the sparse trie.
    ///
    /// The hash builder proof to the leaf 0x0101 had a branch node in the path, but we turned it
    /// into an extension node, so it should ignore this node.
    #[test]
    fn sparse_trie_reveal_node_2() {
        let key1 = || pad_nibbles_right(Nibbles::from_nibbles_unchecked([0x00, 0x00]));
        let key2 = || pad_nibbles_right(Nibbles::from_nibbles_unchecked([0x01, 0x01]));
        let key3 = || pad_nibbles_right(Nibbles::from_nibbles_unchecked([0x01, 0x02]));
        let value = || Account::default();

        // Generate the proof for the root node and initialize the sparse trie with it
        let (_, _, hash_builder_proof_nodes, branch_node_hash_masks) = run_hash_builder(
            [(key1(), value()), (key2(), value()), (key3(), value())],
            Default::default(),
            [Nibbles::default()],
        );
        let mut sparse = RevealedSparseTrie::from_root(
            TrieNode::decode(&mut &hash_builder_proof_nodes.nodes_sorted()[0].1[..]).unwrap(),
            branch_node_hash_masks.get(&Nibbles::default()).copied(),
            false,
        )
        .unwrap();

        // Generate the proof for the children of the root branch node and reveal it in the sparse
        // trie
        let (_, _, hash_builder_proof_nodes, branch_node_hash_masks) = run_hash_builder(
            [(key1(), value()), (key2(), value()), (key3(), value())],
            Default::default(),
            [key1(), Nibbles::from_nibbles_unchecked([0x01])],
        );
        for (path, node) in hash_builder_proof_nodes.nodes_sorted() {
            let hash_mask = branch_node_hash_masks.get(&path).copied();
            sparse.reveal_node(path, TrieNode::decode(&mut &node[..]).unwrap(), hash_mask).unwrap();
        }

        // Check that the branch node exists
        assert_eq!(
            sparse.nodes.get(&Nibbles::default()),
            Some(&SparseNode::new_branch(0b11.into()))
        );

        // Remove the leaf for the first key
        sparse.remove_leaf(&key1()).unwrap();

        // Check that the branch node was turned into an extension node
        assert_eq!(
            sparse.nodes.get(&Nibbles::default()),
            Some(&SparseNode::new_ext(Nibbles::from_nibbles_unchecked([0x01])))
        );

        // Generate the proof for the third key and reveal it in the sparse trie
        let (_, _, hash_builder_proof_nodes, branch_node_hash_masks) = run_hash_builder(
            [(key1(), value()), (key2(), value()), (key3(), value())],
            Default::default(),
            [key2()],
        );
        for (path, node) in hash_builder_proof_nodes.nodes_sorted() {
            let hash_mask = branch_node_hash_masks.get(&path).copied();
            sparse.reveal_node(path, TrieNode::decode(&mut &node[..]).unwrap(), hash_mask).unwrap();
        }

        // Check that nothing changed in the extension node
        assert_eq!(
            sparse.nodes.get(&Nibbles::default()),
            Some(&SparseNode::new_ext(Nibbles::from_nibbles_unchecked([0x01])))
        );
    }

    /// We have two leaves that share the same prefix: 0x0001 and 0x0002, and a leaf with a
    /// different prefix: 0x0100. Hash builder trie has only the first two leaves, and we have
    /// proofs for them.
    ///
    /// 1. Insert the leaf 0x0100 into the sparse trie, and check that the root extensino node was
    ///    turned into a branch node.
    /// 2. Reveal the leaf 0x0001 in the sparse trie, and check that the root branch node wasn't
    ///    overwritten with the extension node from the proof.
    #[test]
    fn sparse_trie_reveal_node_3() {
        let key1 = || pad_nibbles_right(Nibbles::from_nibbles_unchecked([0x00, 0x01]));
        let key2 = || pad_nibbles_right(Nibbles::from_nibbles_unchecked([0x00, 0x02]));
        let key3 = || pad_nibbles_right(Nibbles::from_nibbles_unchecked([0x01, 0x00]));
        let value = || Account::default();
        let value_encoded = || {
            let mut account_rlp = Vec::new();
            value().into_trie_account(EMPTY_ROOT_HASH).encode(&mut account_rlp);
            account_rlp
        };

        // Generate the proof for the root node and initialize the sparse trie with it
        let (_, _, hash_builder_proof_nodes, branch_node_hash_masks) = run_hash_builder(
            [(key1(), value()), (key2(), value())],
            Default::default(),
            [Nibbles::default()],
        );
        let mut sparse = RevealedSparseTrie::from_root(
            TrieNode::decode(&mut &hash_builder_proof_nodes.nodes_sorted()[0].1[..]).unwrap(),
            branch_node_hash_masks.get(&Nibbles::default()).copied(),
            false,
        )
        .unwrap();

        // Check that the root extension node exists
        assert_matches!(
            sparse.nodes.get(&Nibbles::default()),
            Some(SparseNode::Extension { key, hash: None }) if *key == Nibbles::from_nibbles([0x00])
        );

        // Insert the leaf with a different prefix
        sparse.update_leaf(key3(), value_encoded()).unwrap();

        // Check that the extension node was turned into a branch node
        assert_matches!(
            sparse.nodes.get(&Nibbles::default()),
            Some(SparseNode::Branch { state_mask, hash: None, store_in_db_trie: None }) if *state_mask == TrieMask::new(0b11)
        );

        // Generate the proof for the first key and reveal it in the sparse trie
        let (_, _, hash_builder_proof_nodes, branch_node_hash_masks) =
            run_hash_builder([(key1(), value()), (key2(), value())], Default::default(), [key1()]);
        for (path, node) in hash_builder_proof_nodes.nodes_sorted() {
            let hash_mask = branch_node_hash_masks.get(&path).copied();
            sparse.reveal_node(path, TrieNode::decode(&mut &node[..]).unwrap(), hash_mask).unwrap();
        }

        // Check that the branch node wasn't overwritten by the extension node in the proof
        assert_matches!(
            sparse.nodes.get(&Nibbles::default()),
            Some(SparseNode::Branch { state_mask, hash: None, store_in_db_trie: None }) if *state_mask == TrieMask::new(0b11)
        );
    }

    #[test]
    fn sparse_trie_get_changed_nodes_at_depth() {
        let mut sparse = RevealedSparseTrie::default();

        let value = alloy_rlp::encode_fixed_size(&U256::ZERO).to_vec();

        // Extension (Key = 5) – Level 0
        // └── Branch (Mask = 1011) – Level 1
        //     ├── 0 -> Extension (Key = 23) – Level 2
        //     │        └── Branch (Mask = 0101) – Level 3
        //     │              ├── 1 -> Leaf (Key = 1, Path = 50231) – Level 4
        //     │              └── 3 -> Leaf (Key = 3, Path = 50233) – Level 4
        //     ├── 2 -> Leaf (Key = 013, Path = 52013) – Level 2
        //     └── 3 -> Branch (Mask = 0101) – Level 2
        //                ├── 1 -> Leaf (Key = 3102, Path = 53102) – Level 3
        //                └── 3 -> Branch (Mask = 1010) – Level 3
        //                       ├── 0 -> Leaf (Key = 3302, Path = 53302) – Level 4
        //                       └── 2 -> Leaf (Key = 3320, Path = 53320) – Level 4
        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x0, 0x2, 0x3, 0x1]), value.clone())
            .unwrap();
        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x0, 0x2, 0x3, 0x3]), value.clone())
            .unwrap();
        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x2, 0x0, 0x1, 0x3]), value.clone())
            .unwrap();
        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x3, 0x1, 0x0, 0x2]), value.clone())
            .unwrap();
        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x0, 0x2]), value.clone())
            .unwrap();
        sparse.update_leaf(Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x2, 0x0]), value).unwrap();

        assert_eq!(
            sparse.get_changed_nodes_at_depth(&mut PrefixSet::default(), 0),
            vec![Nibbles::default()]
        );
        assert_eq!(
            sparse.get_changed_nodes_at_depth(&mut PrefixSet::default(), 1),
            vec![Nibbles::from_nibbles_unchecked([0x5])]
        );
        assert_eq!(
            sparse.get_changed_nodes_at_depth(&mut PrefixSet::default(), 2),
            vec![
                Nibbles::from_nibbles_unchecked([0x5, 0x0]),
                Nibbles::from_nibbles_unchecked([0x5, 0x2]),
                Nibbles::from_nibbles_unchecked([0x5, 0x3])
            ]
        );
        assert_eq!(
            sparse.get_changed_nodes_at_depth(&mut PrefixSet::default(), 3),
            vec![
                Nibbles::from_nibbles_unchecked([0x5, 0x0, 0x2, 0x3]),
                Nibbles::from_nibbles_unchecked([0x5, 0x2]),
                Nibbles::from_nibbles_unchecked([0x5, 0x3, 0x1]),
                Nibbles::from_nibbles_unchecked([0x5, 0x3, 0x3])
            ]
        );
        assert_eq!(
            sparse.get_changed_nodes_at_depth(&mut PrefixSet::default(), 4),
            vec![
                Nibbles::from_nibbles_unchecked([0x5, 0x0, 0x2, 0x3, 0x1]),
                Nibbles::from_nibbles_unchecked([0x5, 0x0, 0x2, 0x3, 0x3]),
                Nibbles::from_nibbles_unchecked([0x5, 0x2]),
                Nibbles::from_nibbles_unchecked([0x5, 0x3, 0x1]),
                Nibbles::from_nibbles_unchecked([0x5, 0x3, 0x3, 0x0]),
                Nibbles::from_nibbles_unchecked([0x5, 0x3, 0x3, 0x2])
            ]
        );
    }

    #[test]
    fn hash_builder_branch_hash_mask() {
        let key1 = || pad_nibbles_left(Nibbles::from_nibbles_unchecked([0x00]));
        let key2 = || pad_nibbles_left(Nibbles::from_nibbles_unchecked([0x01]));
        let value = || Account { bytecode_hash: Some(B256::repeat_byte(1)), ..Default::default() };
        let value_encoded = || {
            let mut account_rlp = Vec::new();
            value().into_trie_account(EMPTY_ROOT_HASH).encode(&mut account_rlp);
            account_rlp
        };

        let (hash_builder_root, hash_builder_updates, _, _) = run_hash_builder(
            [(key1(), value()), (key2(), value())],
            Default::default(),
            [Nibbles::default()],
        );
        let mut sparse = RevealedSparseTrie::default();
        sparse.update_leaf(key1(), value_encoded()).unwrap();
        sparse.update_leaf(key2(), value_encoded()).unwrap();
        let sparse_root = sparse.root();
        let sparse_updates = sparse.take_updates();

        assert_eq!(sparse_root, hash_builder_root);
        assert_eq!(sparse_updates.updated_nodes, hash_builder_updates.account_nodes);
    }

    #[test]
    fn sparse_trie_wipe() {
        let mut sparse = RevealedSparseTrie::default().with_updates(true);

        let value = alloy_rlp::encode_fixed_size(&U256::ZERO).to_vec();

        // Extension (Key = 5) – Level 0
        // └── Branch (Mask = 1011) – Level 1
        //     ├── 0 -> Extension (Key = 23) – Level 2
        //     │        └── Branch (Mask = 0101) – Level 3
        //     │              ├── 1 -> Leaf (Key = 1, Path = 50231) – Level 4
        //     │              └── 3 -> Leaf (Key = 3, Path = 50233) – Level 4
        //     ├── 2 -> Leaf (Key = 013, Path = 52013) – Level 2
        //     └── 3 -> Branch (Mask = 0101) – Level 2
        //                ├── 1 -> Leaf (Key = 3102, Path = 53102) – Level 3
        //                └── 3 -> Branch (Mask = 1010) – Level 3
        //                       ├── 0 -> Leaf (Key = 3302, Path = 53302) – Level 4
        //                       └── 2 -> Leaf (Key = 3320, Path = 53320) – Level 4
        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x0, 0x2, 0x3, 0x1]), value.clone())
            .unwrap();
        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x0, 0x2, 0x3, 0x3]), value.clone())
            .unwrap();
        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x2, 0x0, 0x1, 0x3]), value.clone())
            .unwrap();
        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x3, 0x1, 0x0, 0x2]), value.clone())
            .unwrap();
        sparse
            .update_leaf(Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x0, 0x2]), value.clone())
            .unwrap();
        sparse.update_leaf(Nibbles::from_nibbles([0x5, 0x3, 0x3, 0x2, 0x0]), value).unwrap();

        sparse.wipe();

        assert_eq!(sparse.root(), EMPTY_ROOT_HASH);
    }
}