1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
use crate::{Address, Signature};
use revm_primitives::B256;

#[cfg(feature = "secp256k1")]
pub(crate) mod secp256k1 {
    pub use super::impl_secp256k1::*;
}

#[cfg(not(feature = "secp256k1"))]
pub(crate) mod secp256k1 {
    pub use super::impl_k256::*;
}

#[cfg(feature = "secp256k1")]
mod impl_secp256k1 {
    use super::*;
    use crate::keccak256;
    pub(crate) use ::secp256k1::Error;
    use ::secp256k1::{
        ecdsa::{RecoverableSignature, RecoveryId},
        Message, PublicKey, SecretKey, SECP256K1,
    };
    use revm_primitives::U256;

    /// Recovers the address of the sender using secp256k1 pubkey recovery.
    ///
    /// Converts the public key into an ethereum address by hashing the public key with keccak256.
    ///
    /// This does not ensure that the `s` value in the signature is low, and _just_ wraps the
    /// underlying secp256k1 library.
    pub fn recover_signer_unchecked(sig: &[u8; 65], msg: &[u8; 32]) -> Result<Address, Error> {
        let sig =
            RecoverableSignature::from_compact(&sig[0..64], RecoveryId::from_i32(sig[64] as i32)?)?;

        let public = SECP256K1.recover_ecdsa(&Message::from_digest(*msg), &sig)?;
        Ok(public_key_to_address(public))
    }

    /// Signs message with the given secret key.
    /// Returns the corresponding signature.
    pub fn sign_message(secret: B256, message: B256) -> Result<Signature, Error> {
        let sec = SecretKey::from_slice(secret.as_ref())?;
        let s = SECP256K1.sign_ecdsa_recoverable(&Message::from_digest(message.0), &sec);
        let (rec_id, data) = s.serialize_compact();

        let signature = Signature {
            r: U256::try_from_be_slice(&data[..32]).expect("The slice has at most 32 bytes"),
            s: U256::try_from_be_slice(&data[32..64]).expect("The slice has at most 32 bytes"),
            odd_y_parity: rec_id.to_i32() != 0,
        };
        Ok(signature)
    }

    /// Converts a public key into an ethereum address by hashing the encoded public key with
    /// keccak256.
    pub fn public_key_to_address(public: PublicKey) -> Address {
        // strip out the first byte because that should be the SECP256K1_TAG_PUBKEY_UNCOMPRESSED
        // tag returned by libsecp's uncompressed pubkey serialization
        let hash = keccak256(&public.serialize_uncompressed()[1..]);
        Address::from_slice(&hash[12..])
    }
}

#[cfg_attr(feature = "secp256k1", allow(unused, unreachable_pub))]
mod impl_k256 {
    use super::*;
    use crate::keccak256;
    pub(crate) use k256::ecdsa::Error;
    use k256::ecdsa::{RecoveryId, SigningKey, VerifyingKey};
    use revm_primitives::U256;

    /// Recovers the address of the sender using secp256k1 pubkey recovery.
    ///
    /// Converts the public key into an ethereum address by hashing the public key with keccak256.
    ///
    /// This does not ensure that the `s` value in the signature is low, and _just_ wraps the
    /// underlying secp256k1 library.
    pub fn recover_signer_unchecked(sig: &[u8; 65], msg: &[u8; 32]) -> Result<Address, Error> {
        let mut signature = k256::ecdsa::Signature::from_slice(&sig[0..64])?;
        let mut recid = sig[64];

        // normalize signature and flip recovery id if needed.
        if let Some(sig_normalized) = signature.normalize_s() {
            signature = sig_normalized;
            recid ^= 1;
        }
        let recid = RecoveryId::from_byte(recid).expect("recovery ID is valid");

        // recover key
        let recovered_key = VerifyingKey::recover_from_prehash(&msg[..], &signature, recid)?;
        Ok(public_key_to_address(recovered_key))
    }

    /// Signs message with the given secret key.
    /// Returns the corresponding signature.
    pub fn sign_message(secret: B256, message: B256) -> Result<Signature, Error> {
        let sec = SigningKey::from_slice(secret.as_ref())?;
        let (sig, rec_id) = sec.sign_prehash_recoverable(&message.0)?;
        let (r, s) = sig.split_bytes();

        let signature = Signature {
            r: U256::try_from_be_slice(&r).expect("The slice has at most 32 bytes"),
            s: U256::try_from_be_slice(&s).expect("The slice has at most 32 bytes"),
            odd_y_parity: rec_id.is_y_odd(),
        };
        Ok(signature)
    }

    /// Converts a public key into an ethereum address by hashing the encoded public key with
    /// keccak256.
    pub fn public_key_to_address(public: VerifyingKey) -> Address {
        let hash = keccak256(&public.to_encoded_point(/* compress = */ false).as_bytes()[1..]);
        Address::from_slice(&hash[12..])
    }
}

#[cfg(test)]
mod tests {
    #[cfg(feature = "secp256k1")]
    #[test]
    fn sanity_ecrecover_call_secp256k1() {
        use super::impl_secp256k1::*;
        use revm_primitives::{keccak256, B256};

        let (secret, public) = secp256k1::generate_keypair(&mut rand::thread_rng());
        let signer = public_key_to_address(public);

        let message = b"hello world";
        let hash = keccak256(message);
        let signature =
            sign_message(B256::from_slice(&secret.secret_bytes()[..]), hash).expect("sign message");

        let mut sig: [u8; 65] = [0; 65];
        sig[0..32].copy_from_slice(&signature.r.to_be_bytes::<32>());
        sig[32..64].copy_from_slice(&signature.s.to_be_bytes::<32>());
        sig[64] = signature.odd_y_parity as u8;

        assert_eq!(recover_signer_unchecked(&sig, &hash), Ok(signer));
    }

    #[cfg(not(feature = "secp256k1"))]
    #[test]
    fn sanity_ecrecover_call_k256() {
        use super::impl_k256::*;
        use revm_primitives::{keccak256, B256};

        let secret = k256::ecdsa::SigningKey::random(&mut rand::thread_rng());
        let public = *secret.verifying_key();
        let signer = public_key_to_address(public);

        let message = b"hello world";
        let hash = keccak256(message);
        let signature =
            sign_message(B256::from_slice(&secret.to_bytes()[..]), hash).expect("sign message");

        let mut sig: [u8; 65] = [0; 65];
        sig[0..32].copy_from_slice(&signature.r.to_be_bytes::<32>());
        sig[32..64].copy_from_slice(&signature.s.to_be_bytes::<32>());
        sig[64] = signature.odd_y_parity as u8;

        assert_eq!(recover_signer_unchecked(&sig, &hash).ok(), Some(signer));
    }

    #[test]
    fn sanity_secp256k1_k256_compat() {
        use super::{impl_k256, impl_secp256k1};
        use revm_primitives::{keccak256, B256};

        let (secp256k1_secret, secp256k1_public) =
            secp256k1::generate_keypair(&mut rand::thread_rng());
        let k256_secret = k256::ecdsa::SigningKey::from_slice(&secp256k1_secret.secret_bytes())
            .expect("k256 secret");
        let k256_public = *k256_secret.verifying_key();

        let secp256k1_signer = impl_secp256k1::public_key_to_address(secp256k1_public);
        let k256_signer = impl_k256::public_key_to_address(k256_public);
        assert_eq!(secp256k1_signer, k256_signer);

        let message = b"hello world";
        let hash = keccak256(message);

        let secp256k1_signature = impl_secp256k1::sign_message(
            B256::from_slice(&secp256k1_secret.secret_bytes()[..]),
            hash,
        )
        .expect("secp256k1 sign");
        let k256_signature =
            impl_k256::sign_message(B256::from_slice(&k256_secret.to_bytes()[..]), hash)
                .expect("k256 sign");
        assert_eq!(secp256k1_signature, k256_signature);

        let mut sig: [u8; 65] = [0; 65];

        sig[0..32].copy_from_slice(&secp256k1_signature.r.to_be_bytes::<32>());
        sig[32..64].copy_from_slice(&secp256k1_signature.s.to_be_bytes::<32>());
        sig[64] = secp256k1_signature.odd_y_parity as u8;
        let secp256k1_recovered =
            impl_secp256k1::recover_signer_unchecked(&sig, &hash).expect("secp256k1 recover");
        assert_eq!(secp256k1_recovered, secp256k1_signer);

        sig[0..32].copy_from_slice(&k256_signature.r.to_be_bytes::<32>());
        sig[32..64].copy_from_slice(&k256_signature.s.to_be_bytes::<32>());
        sig[64] = k256_signature.odd_y_parity as u8;
        let k256_recovered =
            impl_k256::recover_signer_unchecked(&sig, &hash).expect("k256 recover");
        assert_eq!(k256_recovered, k256_signer);

        assert_eq!(secp256k1_recovered, k256_recovered);
    }
}