reth_exex/backfill/
stream.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
use crate::{BackfillJob, SingleBlockBackfillJob};
use std::{
    ops::RangeInclusive,
    pin::Pin,
    task::{ready, Context, Poll},
};

use alloy_primitives::BlockNumber;
use futures::{
    stream::{FuturesOrdered, Stream},
    StreamExt,
};
use reth_evm::execute::{BlockExecutionError, BlockExecutionOutput, BlockExecutorProvider};
use reth_primitives::{BlockWithSenders, Receipt};
use reth_provider::{BlockReader, Chain, HeaderProvider, StateProviderFactory};
use reth_prune_types::PruneModes;
use reth_stages_api::ExecutionStageThresholds;
use reth_tracing::tracing::debug;
use tokio::task::JoinHandle;

use super::job::BackfillJobResult;

/// The default parallelism for active tasks in [`StreamBackfillJob`].
pub(crate) const DEFAULT_PARALLELISM: usize = 4;
/// The default batch size for active tasks in [`StreamBackfillJob`].
const DEFAULT_BATCH_SIZE: usize = 100;

/// Boxed thread-safe iterator that yields [`BackfillJobResult`]s.
type BackfillTaskIterator<T> =
    Box<dyn Iterator<Item = BackfillJobResult<T>> + Send + Sync + 'static>;

/// Backfill task output.
struct BackfillTaskOutput<T> {
    job: BackfillTaskIterator<T>,
    result: Option<BackfillJobResult<T>>,
}

/// Ordered queue of [`JoinHandle`]s that yield [`BackfillTaskOutput`]s.
type BackfillTasks<T> = FuturesOrdered<JoinHandle<BackfillTaskOutput<T>>>;

type SingleBlockStreamItem = (BlockWithSenders, BlockExecutionOutput<Receipt>);
type BatchBlockStreamItem = Chain;

/// Stream for processing backfill jobs asynchronously.
///
/// This struct manages the execution of [`SingleBlockBackfillJob`] tasks, allowing blocks to be
/// processed asynchronously but in order within a specified range.
#[derive(Debug)]
pub struct StreamBackfillJob<E, P, T> {
    executor: E,
    provider: P,
    prune_modes: PruneModes,
    range: RangeInclusive<BlockNumber>,
    tasks: BackfillTasks<T>,
    parallelism: usize,
    batch_size: usize,
    thresholds: ExecutionStageThresholds,
}

impl<E, P, T> StreamBackfillJob<E, P, T>
where
    T: Send + Sync + 'static,
{
    /// Configures the parallelism of the [`StreamBackfillJob`] to handle active tasks.
    pub const fn with_parallelism(mut self, parallelism: usize) -> Self {
        self.parallelism = parallelism;
        self
    }

    /// Configures the batch size for the [`StreamBackfillJob`].
    pub const fn with_batch_size(mut self, batch_size: usize) -> Self {
        self.batch_size = batch_size;
        self
    }

    /// Spawns a new task calling the [`BackfillTaskIterator::next`] method and pushes it to the
    /// [`BackfillTasks`] queue.
    fn push_task(&mut self, mut job: BackfillTaskIterator<T>) {
        self.tasks.push_back(tokio::task::spawn_blocking(move || BackfillTaskOutput {
            result: job.next(),
            job,
        }));
    }

    /// Polls the next task in the [`BackfillTasks`] queue until it returns a non-empty result.
    fn poll_next_task(&mut self, cx: &mut Context<'_>) -> Poll<Option<BackfillJobResult<T>>> {
        while let Some(res) = ready!(self.tasks.poll_next_unpin(cx)) {
            let task_result = res.map_err(BlockExecutionError::other)?;

            if let BackfillTaskOutput { result: Some(job_result), job } = task_result {
                // If the task returned a non-empty result, a new task advancing the job is created
                // and pushed to the front of the queue.
                self.push_task(job);

                return Poll::Ready(Some(job_result))
            };
        }

        Poll::Ready(None)
    }
}

impl<E, P> Stream for StreamBackfillJob<E, P, SingleBlockStreamItem>
where
    E: BlockExecutorProvider + Clone + Send + 'static,
    P: HeaderProvider + BlockReader + StateProviderFactory + Clone + Send + Unpin + 'static,
{
    type Item = BackfillJobResult<SingleBlockStreamItem>;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        let this = self.get_mut();

        // Spawn new tasks only if we are below the parallelism configured.
        while this.tasks.len() < this.parallelism {
            // Get the next block number from the range. If it is empty, we are done.
            let Some(block_number) = this.range.next() else {
                debug!(target: "exex::backfill", tasks = %this.tasks.len(), range = ?this.range, "No more single blocks to backfill");
                break;
            };

            // Spawn a new task for that block
            debug!(target: "exex::backfill", tasks = %this.tasks.len(), ?block_number, "Spawning new single block backfill task");
            let job = Box::new(SingleBlockBackfillJob {
                executor: this.executor.clone(),
                provider: this.provider.clone(),
                range: block_number..=block_number,
                stream_parallelism: this.parallelism,
            }) as BackfillTaskIterator<_>;
            this.push_task(job);
        }

        this.poll_next_task(cx)
    }
}

impl<E, P> Stream for StreamBackfillJob<E, P, BatchBlockStreamItem>
where
    E: BlockExecutorProvider + Clone + Send + 'static,
    P: HeaderProvider + BlockReader + StateProviderFactory + Clone + Send + Unpin + 'static,
{
    type Item = BackfillJobResult<BatchBlockStreamItem>;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        let this = self.get_mut();

        // Spawn new tasks only if we are below the parallelism configured.
        while this.tasks.len() < this.parallelism {
            // Take the next `batch_size` blocks from the range and calculate the range bounds
            let mut range = this.range.by_ref().take(this.batch_size);
            let start = range.next();
            let range_bounds = start.zip(range.last().or(start));

            // Create the range from the range bounds. If it is empty, we are done.
            let Some(range) = range_bounds.map(|(first, last)| first..=last) else {
                debug!(target: "exex::backfill", tasks = %this.tasks.len(), range = ?this.range, "No more block batches to backfill");
                break;
            };

            // Spawn a new task for that range
            debug!(target: "exex::backfill", tasks = %this.tasks.len(), ?range, "Spawning new block batch backfill task");
            let job = Box::new(BackfillJob {
                executor: this.executor.clone(),
                provider: this.provider.clone(),
                prune_modes: this.prune_modes.clone(),
                thresholds: this.thresholds.clone(),
                range,
                stream_parallelism: this.parallelism,
            }) as BackfillTaskIterator<_>;
            this.push_task(job);
        }

        this.poll_next_task(cx)
    }
}

impl<E, P> From<SingleBlockBackfillJob<E, P>> for StreamBackfillJob<E, P, SingleBlockStreamItem> {
    fn from(job: SingleBlockBackfillJob<E, P>) -> Self {
        Self {
            executor: job.executor,
            provider: job.provider,
            prune_modes: PruneModes::default(),
            range: job.range,
            tasks: FuturesOrdered::new(),
            parallelism: job.stream_parallelism,
            batch_size: 1,
            thresholds: ExecutionStageThresholds { max_blocks: Some(1), ..Default::default() },
        }
    }
}

impl<E, P> From<BackfillJob<E, P>> for StreamBackfillJob<E, P, BatchBlockStreamItem> {
    fn from(job: BackfillJob<E, P>) -> Self {
        let batch_size = job.thresholds.max_blocks.map_or(DEFAULT_BATCH_SIZE, |max| max as usize);
        Self {
            executor: job.executor,
            provider: job.provider,
            prune_modes: job.prune_modes,
            range: job.range,
            tasks: FuturesOrdered::new(),
            parallelism: job.stream_parallelism,
            batch_size,
            thresholds: ExecutionStageThresholds {
                max_blocks: Some(batch_size as u64),
                ..job.thresholds
            },
        }
    }
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use crate::{
        backfill::test_utils::{
            blocks_and_execution_outcome, blocks_and_execution_outputs, chain_spec,
        },
        BackfillJobFactory,
    };
    use futures::StreamExt;
    use reth_blockchain_tree::noop::NoopBlockchainTree;
    use reth_db_common::init::init_genesis;
    use reth_evm_ethereum::execute::EthExecutorProvider;
    use reth_primitives::public_key_to_address;
    use reth_provider::{
        providers::BlockchainProvider, test_utils::create_test_provider_factory_with_chain_spec,
    };
    use reth_stages_api::ExecutionStageThresholds;
    use reth_testing_utils::generators;
    use secp256k1::Keypair;

    #[tokio::test]
    async fn test_single_blocks() -> eyre::Result<()> {
        reth_tracing::init_test_tracing();

        // Create a key pair for the sender
        let key_pair = Keypair::new_global(&mut generators::rng());
        let address = public_key_to_address(key_pair.public_key());

        let chain_spec = chain_spec(address);

        let executor = EthExecutorProvider::ethereum(chain_spec.clone());
        let provider_factory = create_test_provider_factory_with_chain_spec(chain_spec.clone());
        init_genesis(&provider_factory)?;
        let blockchain_db = BlockchainProvider::new(
            provider_factory.clone(),
            Arc::new(NoopBlockchainTree::default()),
        )?;

        // Create first 2 blocks
        let blocks_and_execution_outcomes =
            blocks_and_execution_outputs(provider_factory, chain_spec, key_pair)?;

        // Backfill the first block
        let factory = BackfillJobFactory::new(executor.clone(), blockchain_db.clone());
        let mut backfill_stream = factory.backfill(1..=1).into_single_blocks().into_stream();

        // execute first block
        let (block, mut execution_output) = backfill_stream.next().await.unwrap().unwrap();
        execution_output.state.reverts.sort();
        let sealed_block_with_senders = blocks_and_execution_outcomes[0].0.clone();
        let expected_block = sealed_block_with_senders.unseal();
        let expected_output = &blocks_and_execution_outcomes[0].1;
        assert_eq!(block, expected_block);
        assert_eq!(&execution_output, expected_output);

        // expect no more blocks
        assert!(backfill_stream.next().await.is_none());

        Ok(())
    }

    #[tokio::test]
    async fn test_batch() -> eyre::Result<()> {
        reth_tracing::init_test_tracing();

        // Create a key pair for the sender
        let key_pair = Keypair::new_global(&mut generators::rng());
        let address = public_key_to_address(key_pair.public_key());

        let chain_spec = chain_spec(address);

        let executor = EthExecutorProvider::ethereum(chain_spec.clone());
        let provider_factory = create_test_provider_factory_with_chain_spec(chain_spec.clone());
        init_genesis(&provider_factory)?;
        let blockchain_db = BlockchainProvider::new(
            provider_factory.clone(),
            Arc::new(NoopBlockchainTree::default()),
        )?;

        // Create first 2 blocks
        let (blocks, execution_outcome) =
            blocks_and_execution_outcome(provider_factory, chain_spec, key_pair)?;

        // Backfill the same range
        let factory =
            BackfillJobFactory::new(executor.clone(), blockchain_db.clone()).with_thresholds(
                ExecutionStageThresholds { max_blocks: Some(2), ..Default::default() },
            );
        let mut backfill_stream = factory.backfill(1..=2).into_stream();
        let mut chain = backfill_stream.next().await.unwrap().unwrap();
        chain.execution_outcome_mut().state_mut().reverts.sort();

        assert!(chain.blocks_iter().eq(&blocks));
        assert_eq!(chain.execution_outcome(), &execution_outcome);

        // expect no more blocks
        assert!(backfill_stream.next().await.is_none());

        Ok(())
    }
}