reth_provider/providers/
consistent.rs

1use super::{DatabaseProviderRO, ProviderFactory, ProviderNodeTypes};
2use crate::{
3    providers::StaticFileProvider, AccountReader, BlockHashReader, BlockIdReader, BlockNumReader,
4    BlockReader, BlockReaderIdExt, BlockSource, ChainSpecProvider, ChangeSetReader, HeaderProvider,
5    ProviderError, PruneCheckpointReader, ReceiptProvider, ReceiptProviderIdExt,
6    StageCheckpointReader, StateReader, StaticFileProviderFactory, TransactionVariant,
7    TransactionsProvider,
8};
9use alloy_consensus::{transaction::TransactionMeta, BlockHeader};
10use alloy_eips::{
11    eip2718::Encodable2718, BlockHashOrNumber, BlockId, BlockNumHash, BlockNumberOrTag,
12    HashOrNumber,
13};
14use alloy_primitives::{
15    map::{hash_map, HashMap},
16    Address, BlockHash, BlockNumber, TxHash, TxNumber, B256, U256,
17};
18use reth_chain_state::{BlockState, CanonicalInMemoryState, MemoryOverlayStateProviderRef};
19use reth_chainspec::ChainInfo;
20use reth_db_api::models::{AccountBeforeTx, BlockNumberAddress, StoredBlockBodyIndices};
21use reth_execution_types::{BundleStateInit, ExecutionOutcome, RevertsInit};
22use reth_node_types::{BlockTy, HeaderTy, ReceiptTy, TxTy};
23use reth_primitives_traits::{Account, BlockBody, RecoveredBlock, SealedHeader, StorageEntry};
24use reth_prune_types::{PruneCheckpoint, PruneSegment};
25use reth_stages_types::{StageCheckpoint, StageId};
26use reth_storage_api::{
27    BlockBodyIndicesProvider, DatabaseProviderFactory, NodePrimitivesProvider, StateProvider,
28    StorageChangeSetReader, TryIntoHistoricalStateProvider,
29};
30use reth_storage_errors::provider::ProviderResult;
31use revm_database::states::PlainStorageRevert;
32use std::{
33    ops::{Add, Bound, RangeBounds, RangeInclusive, Sub},
34    sync::Arc,
35};
36use tracing::trace;
37
38/// Type that interacts with a snapshot view of the blockchain (storage and in-memory) at time of
39/// instantiation, EXCEPT for pending, safe and finalized block which might change while holding
40/// this provider.
41///
42/// CAUTION: Avoid holding this provider for too long or the inner database transaction will
43/// time-out.
44#[derive(Debug)]
45#[doc(hidden)] // triggers ICE for `cargo docs`
46pub struct ConsistentProvider<N: ProviderNodeTypes> {
47    /// Storage provider.
48    storage_provider: <ProviderFactory<N> as DatabaseProviderFactory>::Provider,
49    /// Head block at time of [`Self`] creation
50    head_block: Option<Arc<BlockState<N::Primitives>>>,
51    /// In-memory canonical state. This is not a snapshot, and can change! Use with caution.
52    canonical_in_memory_state: CanonicalInMemoryState<N::Primitives>,
53}
54
55impl<N: ProviderNodeTypes> ConsistentProvider<N> {
56    /// Create a new provider using [`ProviderFactory`] and [`CanonicalInMemoryState`],
57    ///
58    /// Underneath it will take a snapshot by fetching [`CanonicalInMemoryState::head_state`] and
59    /// [`ProviderFactory::database_provider_ro`] effectively maintaining one single snapshotted
60    /// view of memory and database.
61    pub fn new(
62        storage_provider_factory: ProviderFactory<N>,
63        state: CanonicalInMemoryState<N::Primitives>,
64    ) -> ProviderResult<Self> {
65        // Each one provides a snapshot at the time of instantiation, but its order matters.
66        //
67        // If we acquire first the database provider, it's possible that before the in-memory chain
68        // snapshot is instantiated, it will flush blocks to disk. This would
69        // mean that our database provider would not have access to the flushed blocks (since it's
70        // working under an older view), while the in-memory state may have deleted them
71        // entirely. Resulting in gaps on the range.
72        let head_block = state.head_state();
73        let storage_provider = storage_provider_factory.database_provider_ro()?;
74        Ok(Self { storage_provider, head_block, canonical_in_memory_state: state })
75    }
76
77    // Helper function to convert range bounds
78    fn convert_range_bounds<T>(
79        &self,
80        range: impl RangeBounds<T>,
81        end_unbounded: impl FnOnce() -> T,
82    ) -> (T, T)
83    where
84        T: Copy + Add<Output = T> + Sub<Output = T> + From<u8>,
85    {
86        let start = match range.start_bound() {
87            Bound::Included(&n) => n,
88            Bound::Excluded(&n) => n + T::from(1u8),
89            Bound::Unbounded => T::from(0u8),
90        };
91
92        let end = match range.end_bound() {
93            Bound::Included(&n) => n,
94            Bound::Excluded(&n) => n - T::from(1u8),
95            Bound::Unbounded => end_unbounded(),
96        };
97
98        (start, end)
99    }
100
101    /// Storage provider for latest block
102    fn latest_ref<'a>(&'a self) -> ProviderResult<Box<dyn StateProvider + 'a>> {
103        trace!(target: "providers::blockchain", "Getting latest block state provider");
104
105        // use latest state provider if the head state exists
106        if let Some(state) = &self.head_block {
107            trace!(target: "providers::blockchain", "Using head state for latest state provider");
108            Ok(self.block_state_provider_ref(state)?.boxed())
109        } else {
110            trace!(target: "providers::blockchain", "Using database state for latest state provider");
111            Ok(self.storage_provider.latest())
112        }
113    }
114
115    fn history_by_block_hash_ref<'a>(
116        &'a self,
117        block_hash: BlockHash,
118    ) -> ProviderResult<Box<dyn StateProvider + 'a>> {
119        trace!(target: "providers::blockchain", ?block_hash, "Getting history by block hash");
120
121        self.get_in_memory_or_storage_by_block(
122            block_hash.into(),
123            |_| self.storage_provider.history_by_block_hash(block_hash),
124            |block_state| {
125                let state_provider = self.block_state_provider_ref(block_state)?;
126                Ok(Box::new(state_provider))
127            },
128        )
129    }
130
131    /// Returns a state provider indexed by the given block number or tag.
132    fn state_by_block_number_ref<'a>(
133        &'a self,
134        number: BlockNumber,
135    ) -> ProviderResult<Box<dyn StateProvider + 'a>> {
136        let hash =
137            self.block_hash(number)?.ok_or_else(|| ProviderError::HeaderNotFound(number.into()))?;
138        self.history_by_block_hash_ref(hash)
139    }
140
141    /// Return the last N blocks of state, recreating the [`ExecutionOutcome`].
142    ///
143    /// If the range is empty, or there are no blocks for the given range, then this returns `None`.
144    pub fn get_state(
145        &self,
146        range: RangeInclusive<BlockNumber>,
147    ) -> ProviderResult<Option<ExecutionOutcome<ReceiptTy<N>>>> {
148        if range.is_empty() {
149            return Ok(None)
150        }
151        let start_block_number = *range.start();
152        let end_block_number = *range.end();
153
154        // We are not removing block meta as it is used to get block changesets.
155        let mut block_bodies = Vec::new();
156        for block_num in range.clone() {
157            let block_body = self
158                .block_body_indices(block_num)?
159                .ok_or(ProviderError::BlockBodyIndicesNotFound(block_num))?;
160            block_bodies.push((block_num, block_body))
161        }
162
163        // get transaction receipts
164        let Some(from_transaction_num) = block_bodies.first().map(|body| body.1.first_tx_num())
165        else {
166            return Ok(None)
167        };
168        let Some(to_transaction_num) = block_bodies.last().map(|body| body.1.last_tx_num()) else {
169            return Ok(None)
170        };
171
172        let mut account_changeset = Vec::new();
173        for block_num in range.clone() {
174            let changeset =
175                self.account_block_changeset(block_num)?.into_iter().map(|elem| (block_num, elem));
176            account_changeset.extend(changeset);
177        }
178
179        let mut storage_changeset = Vec::new();
180        for block_num in range {
181            let changeset = self.storage_changeset(block_num)?;
182            storage_changeset.extend(changeset);
183        }
184
185        let (state, reverts) =
186            self.populate_bundle_state(account_changeset, storage_changeset, end_block_number)?;
187
188        let mut receipt_iter =
189            self.receipts_by_tx_range(from_transaction_num..=to_transaction_num)?.into_iter();
190
191        let mut receipts = Vec::with_capacity(block_bodies.len());
192        // loop break if we are at the end of the blocks.
193        for (_, block_body) in block_bodies {
194            let mut block_receipts = Vec::with_capacity(block_body.tx_count as usize);
195            for tx_num in block_body.tx_num_range() {
196                let receipt = receipt_iter
197                    .next()
198                    .ok_or_else(|| ProviderError::ReceiptNotFound(tx_num.into()))?;
199                block_receipts.push(receipt);
200            }
201            receipts.push(block_receipts);
202        }
203
204        Ok(Some(ExecutionOutcome::new_init(
205            state,
206            reverts,
207            // We skip new contracts since we never delete them from the database
208            Vec::new(),
209            receipts,
210            start_block_number,
211            Vec::new(),
212        )))
213    }
214
215    /// Populate a [`BundleStateInit`] and [`RevertsInit`] using cursors over the
216    /// [`reth_db::PlainAccountState`] and [`reth_db::PlainStorageState`] tables, based on the given
217    /// storage and account changesets.
218    fn populate_bundle_state(
219        &self,
220        account_changeset: Vec<(u64, AccountBeforeTx)>,
221        storage_changeset: Vec<(BlockNumberAddress, StorageEntry)>,
222        block_range_end: BlockNumber,
223    ) -> ProviderResult<(BundleStateInit, RevertsInit)> {
224        let mut state: BundleStateInit = HashMap::default();
225        let mut reverts: RevertsInit = HashMap::default();
226        let state_provider = self.state_by_block_number_ref(block_range_end)?;
227
228        // add account changeset changes
229        for (block_number, account_before) in account_changeset.into_iter().rev() {
230            let AccountBeforeTx { info: old_info, address } = account_before;
231            match state.entry(address) {
232                hash_map::Entry::Vacant(entry) => {
233                    let new_info = state_provider.basic_account(&address)?;
234                    entry.insert((old_info, new_info, HashMap::default()));
235                }
236                hash_map::Entry::Occupied(mut entry) => {
237                    // overwrite old account state.
238                    entry.get_mut().0 = old_info;
239                }
240            }
241            // insert old info into reverts.
242            reverts.entry(block_number).or_default().entry(address).or_default().0 = Some(old_info);
243        }
244
245        // add storage changeset changes
246        for (block_and_address, old_storage) in storage_changeset.into_iter().rev() {
247            let BlockNumberAddress((block_number, address)) = block_and_address;
248            // get account state or insert from plain state.
249            let account_state = match state.entry(address) {
250                hash_map::Entry::Vacant(entry) => {
251                    let present_info = state_provider.basic_account(&address)?;
252                    entry.insert((present_info, present_info, HashMap::default()))
253                }
254                hash_map::Entry::Occupied(entry) => entry.into_mut(),
255            };
256
257            // match storage.
258            match account_state.2.entry(old_storage.key) {
259                hash_map::Entry::Vacant(entry) => {
260                    let new_storage_value =
261                        state_provider.storage(address, old_storage.key)?.unwrap_or_default();
262                    entry.insert((old_storage.value, new_storage_value));
263                }
264                hash_map::Entry::Occupied(mut entry) => {
265                    entry.get_mut().0 = old_storage.value;
266                }
267            };
268
269            reverts
270                .entry(block_number)
271                .or_default()
272                .entry(address)
273                .or_default()
274                .1
275                .push(old_storage);
276        }
277
278        Ok((state, reverts))
279    }
280
281    /// Fetches a range of data from both in-memory state and persistent storage while a predicate
282    /// is met.
283    ///
284    /// Creates a snapshot of the in-memory chain state and database provider to prevent
285    /// inconsistencies. Splits the range into in-memory and storage sections, prioritizing
286    /// recent in-memory blocks in case of overlaps.
287    ///
288    /// * `fetch_db_range` function (`F`) provides access to the database provider, allowing the
289    ///   user to retrieve the required items from the database using [`RangeInclusive`].
290    /// * `map_block_state_item` function (`G`) provides each block of the range in the in-memory
291    ///   state, allowing for selection or filtering for the desired data.
292    fn get_in_memory_or_storage_by_block_range_while<T, F, G, P>(
293        &self,
294        range: impl RangeBounds<BlockNumber>,
295        fetch_db_range: F,
296        map_block_state_item: G,
297        mut predicate: P,
298    ) -> ProviderResult<Vec<T>>
299    where
300        F: FnOnce(
301            &DatabaseProviderRO<N::DB, N>,
302            RangeInclusive<BlockNumber>,
303            &mut P,
304        ) -> ProviderResult<Vec<T>>,
305        G: Fn(&BlockState<N::Primitives>, &mut P) -> Option<T>,
306        P: FnMut(&T) -> bool,
307    {
308        // Each one provides a snapshot at the time of instantiation, but its order matters.
309        //
310        // If we acquire first the database provider, it's possible that before the in-memory chain
311        // snapshot is instantiated, it will flush blocks to disk. This would
312        // mean that our database provider would not have access to the flushed blocks (since it's
313        // working under an older view), while the in-memory state may have deleted them
314        // entirely. Resulting in gaps on the range.
315        let mut in_memory_chain =
316            self.head_block.as_ref().map(|b| b.chain().collect::<Vec<_>>()).unwrap_or_default();
317        let db_provider = &self.storage_provider;
318
319        let (start, end) = self.convert_range_bounds(range, || {
320            // the first block is the highest one.
321            in_memory_chain
322                .first()
323                .map(|b| b.number())
324                .unwrap_or_else(|| db_provider.last_block_number().unwrap_or_default())
325        });
326
327        if start > end {
328            return Ok(vec![])
329        }
330
331        // Split range into storage_range and in-memory range. If the in-memory range is not
332        // necessary drop it early.
333        //
334        // The last block of `in_memory_chain` is the lowest block number.
335        let (in_memory, storage_range) = match in_memory_chain.last().as_ref().map(|b| b.number()) {
336            Some(lowest_memory_block) if lowest_memory_block <= end => {
337                let highest_memory_block =
338                    in_memory_chain.first().as_ref().map(|b| b.number()).expect("qed");
339
340                // Database will for a time overlap with in-memory-chain blocks. In
341                // case of a re-org, it can mean that the database blocks are of a forked chain, and
342                // so, we should prioritize the in-memory overlapped blocks.
343                let in_memory_range =
344                    lowest_memory_block.max(start)..=end.min(highest_memory_block);
345
346                // If requested range is in the middle of the in-memory range, remove the necessary
347                // lowest blocks
348                in_memory_chain.truncate(
349                    in_memory_chain
350                        .len()
351                        .saturating_sub(start.saturating_sub(lowest_memory_block) as usize),
352                );
353
354                let storage_range =
355                    (lowest_memory_block > start).then(|| start..=lowest_memory_block - 1);
356
357                (Some((in_memory_chain, in_memory_range)), storage_range)
358            }
359            _ => {
360                // Drop the in-memory chain so we don't hold blocks in memory.
361                drop(in_memory_chain);
362
363                (None, Some(start..=end))
364            }
365        };
366
367        let mut items = Vec::with_capacity((end - start + 1) as usize);
368
369        if let Some(storage_range) = storage_range {
370            let mut db_items = fetch_db_range(db_provider, storage_range.clone(), &mut predicate)?;
371            items.append(&mut db_items);
372
373            // The predicate was not met, if the number of items differs from the expected. So, we
374            // return what we have.
375            if items.len() as u64 != storage_range.end() - storage_range.start() + 1 {
376                return Ok(items)
377            }
378        }
379
380        if let Some((in_memory_chain, in_memory_range)) = in_memory {
381            for (num, block) in in_memory_range.zip(in_memory_chain.into_iter().rev()) {
382                debug_assert!(num == block.number());
383                if let Some(item) = map_block_state_item(block, &mut predicate) {
384                    items.push(item);
385                } else {
386                    break
387                }
388            }
389        }
390
391        Ok(items)
392    }
393
394    /// This uses a given [`BlockState`] to initialize a state provider for that block.
395    fn block_state_provider_ref(
396        &self,
397        state: &BlockState<N::Primitives>,
398    ) -> ProviderResult<MemoryOverlayStateProviderRef<'_, N::Primitives>> {
399        let anchor_hash = state.anchor().hash;
400        let latest_historical = self.history_by_block_hash_ref(anchor_hash)?;
401        let in_memory = state.chain().map(|block_state| block_state.block()).collect();
402        Ok(MemoryOverlayStateProviderRef::new(latest_historical, in_memory))
403    }
404
405    /// Fetches data from either in-memory state or persistent storage for a range of transactions.
406    ///
407    /// * `fetch_from_db`: has a `DatabaseProviderRO` and the storage specific range.
408    /// * `fetch_from_block_state`: has a [`RangeInclusive`] of elements that should be fetched from
409    ///   [`BlockState`]. [`RangeInclusive`] is necessary to handle partial look-ups of a block.
410    fn get_in_memory_or_storage_by_tx_range<S, M, R>(
411        &self,
412        range: impl RangeBounds<BlockNumber>,
413        fetch_from_db: S,
414        fetch_from_block_state: M,
415    ) -> ProviderResult<Vec<R>>
416    where
417        S: FnOnce(
418            &DatabaseProviderRO<N::DB, N>,
419            RangeInclusive<TxNumber>,
420        ) -> ProviderResult<Vec<R>>,
421        M: Fn(RangeInclusive<usize>, &BlockState<N::Primitives>) -> ProviderResult<Vec<R>>,
422    {
423        let in_mem_chain = self.head_block.iter().flat_map(|b| b.chain()).collect::<Vec<_>>();
424        let provider = &self.storage_provider;
425
426        // Get the last block number stored in the storage which does NOT overlap with in-memory
427        // chain.
428        let last_database_block_number = in_mem_chain
429            .last()
430            .map(|b| Ok(b.anchor().number))
431            .unwrap_or_else(|| provider.last_block_number())?;
432
433        // Get the next tx number for the last block stored in the storage, which marks the start of
434        // the in-memory state.
435        let last_block_body_index = provider
436            .block_body_indices(last_database_block_number)?
437            .ok_or(ProviderError::BlockBodyIndicesNotFound(last_database_block_number))?;
438        let mut in_memory_tx_num = last_block_body_index.next_tx_num();
439
440        let (start, end) = self.convert_range_bounds(range, || {
441            in_mem_chain
442                .iter()
443                .map(|b| b.block_ref().recovered_block().body().transactions().len() as u64)
444                .sum::<u64>() +
445                last_block_body_index.last_tx_num()
446        });
447
448        if start > end {
449            return Ok(vec![])
450        }
451
452        let mut tx_range = start..=end;
453
454        // If the range is entirely before the first in-memory transaction number, fetch from
455        // storage
456        if *tx_range.end() < in_memory_tx_num {
457            return fetch_from_db(provider, tx_range);
458        }
459
460        let mut items = Vec::with_capacity((tx_range.end() - tx_range.start() + 1) as usize);
461
462        // If the range spans storage and memory, get elements from storage first.
463        if *tx_range.start() < in_memory_tx_num {
464            // Determine the range that needs to be fetched from storage.
465            let db_range = *tx_range.start()..=in_memory_tx_num.saturating_sub(1);
466
467            // Set the remaining transaction range for in-memory
468            tx_range = in_memory_tx_num..=*tx_range.end();
469
470            items.extend(fetch_from_db(provider, db_range)?);
471        }
472
473        // Iterate from the lowest block to the highest in-memory chain
474        for block_state in in_mem_chain.iter().rev() {
475            let block_tx_count =
476                block_state.block_ref().recovered_block().body().transactions().len();
477            let remaining = (tx_range.end() - tx_range.start() + 1) as usize;
478
479            // If the transaction range start is equal or higher than the next block first
480            // transaction, advance
481            if *tx_range.start() >= in_memory_tx_num + block_tx_count as u64 {
482                in_memory_tx_num += block_tx_count as u64;
483                continue
484            }
485
486            // This should only be more than 0 once, in case of a partial range inside a block.
487            let skip = (tx_range.start() - in_memory_tx_num) as usize;
488
489            items.extend(fetch_from_block_state(
490                skip..=skip + (remaining.min(block_tx_count - skip) - 1),
491                block_state,
492            )?);
493
494            in_memory_tx_num += block_tx_count as u64;
495
496            // Break if the range has been fully processed
497            if in_memory_tx_num > *tx_range.end() {
498                break
499            }
500
501            // Set updated range
502            tx_range = in_memory_tx_num..=*tx_range.end();
503        }
504
505        Ok(items)
506    }
507
508    /// Fetches data from either in-memory state or persistent storage by transaction
509    /// [`HashOrNumber`].
510    fn get_in_memory_or_storage_by_tx<S, M, R>(
511        &self,
512        id: HashOrNumber,
513        fetch_from_db: S,
514        fetch_from_block_state: M,
515    ) -> ProviderResult<Option<R>>
516    where
517        S: FnOnce(&DatabaseProviderRO<N::DB, N>) -> ProviderResult<Option<R>>,
518        M: Fn(usize, TxNumber, &BlockState<N::Primitives>) -> ProviderResult<Option<R>>,
519    {
520        let in_mem_chain = self.head_block.iter().flat_map(|b| b.chain()).collect::<Vec<_>>();
521        let provider = &self.storage_provider;
522
523        // Get the last block number stored in the database which does NOT overlap with in-memory
524        // chain.
525        let last_database_block_number = in_mem_chain
526            .last()
527            .map(|b| Ok(b.anchor().number))
528            .unwrap_or_else(|| provider.last_block_number())?;
529
530        // Get the next tx number for the last block stored in the database and consider it the
531        // first tx number of the in-memory state
532        let last_block_body_index = provider
533            .block_body_indices(last_database_block_number)?
534            .ok_or(ProviderError::BlockBodyIndicesNotFound(last_database_block_number))?;
535        let mut in_memory_tx_num = last_block_body_index.next_tx_num();
536
537        // If the transaction number is less than the first in-memory transaction number, make a
538        // database lookup
539        if let HashOrNumber::Number(id) = id {
540            if id < in_memory_tx_num {
541                return fetch_from_db(provider)
542            }
543        }
544
545        // Iterate from the lowest block to the highest
546        for block_state in in_mem_chain.iter().rev() {
547            let executed_block = block_state.block_ref();
548            let block = executed_block.recovered_block();
549
550            for tx_index in 0..block.body().transactions().len() {
551                match id {
552                    HashOrNumber::Hash(tx_hash) => {
553                        if tx_hash == block.body().transactions()[tx_index].trie_hash() {
554                            return fetch_from_block_state(tx_index, in_memory_tx_num, block_state)
555                        }
556                    }
557                    HashOrNumber::Number(id) => {
558                        if id == in_memory_tx_num {
559                            return fetch_from_block_state(tx_index, in_memory_tx_num, block_state)
560                        }
561                    }
562                }
563
564                in_memory_tx_num += 1;
565            }
566        }
567
568        // Not found in-memory, so check database.
569        if let HashOrNumber::Hash(_) = id {
570            return fetch_from_db(provider)
571        }
572
573        Ok(None)
574    }
575
576    /// Fetches data from either in-memory state or persistent storage by [`BlockHashOrNumber`].
577    pub(crate) fn get_in_memory_or_storage_by_block<S, M, R>(
578        &self,
579        id: BlockHashOrNumber,
580        fetch_from_db: S,
581        fetch_from_block_state: M,
582    ) -> ProviderResult<R>
583    where
584        S: FnOnce(&DatabaseProviderRO<N::DB, N>) -> ProviderResult<R>,
585        M: Fn(&BlockState<N::Primitives>) -> ProviderResult<R>,
586    {
587        if let Some(Some(block_state)) = self.head_block.as_ref().map(|b| b.block_on_chain(id)) {
588            return fetch_from_block_state(block_state)
589        }
590        fetch_from_db(&self.storage_provider)
591    }
592
593    /// Consumes the provider and returns a state provider for the specific block hash.
594    pub(crate) fn into_state_provider_at_block_hash(
595        self,
596        block_hash: BlockHash,
597    ) -> ProviderResult<Box<dyn StateProvider>> {
598        let Self { storage_provider, head_block, .. } = self;
599        let into_history_at_block_hash = |block_hash| -> ProviderResult<Box<dyn StateProvider>> {
600            let block_number = storage_provider
601                .block_number(block_hash)?
602                .ok_or(ProviderError::BlockHashNotFound(block_hash))?;
603            storage_provider.try_into_history_at_block(block_number)
604        };
605        if let Some(Some(block_state)) =
606            head_block.as_ref().map(|b| b.block_on_chain(block_hash.into()))
607        {
608            let anchor_hash = block_state.anchor().hash;
609            let latest_historical = into_history_at_block_hash(anchor_hash)?;
610            return Ok(Box::new(block_state.state_provider(latest_historical)));
611        }
612        into_history_at_block_hash(block_hash)
613    }
614}
615
616impl<N: ProviderNodeTypes> ConsistentProvider<N> {
617    /// Ensures that the given block number is canonical (synced)
618    ///
619    /// This is a helper for guarding the `HistoricalStateProvider` against block numbers that are
620    /// out of range and would lead to invalid results, mainly during initial sync.
621    ///
622    /// Verifying the `block_number` would be expensive since we need to lookup sync table
623    /// Instead, we ensure that the `block_number` is within the range of the
624    /// [`Self::best_block_number`] which is updated when a block is synced.
625    #[inline]
626    pub(crate) fn ensure_canonical_block(&self, block_number: BlockNumber) -> ProviderResult<()> {
627        let latest = self.best_block_number()?;
628        if block_number > latest {
629            Err(ProviderError::HeaderNotFound(block_number.into()))
630        } else {
631            Ok(())
632        }
633    }
634}
635
636impl<N: ProviderNodeTypes> NodePrimitivesProvider for ConsistentProvider<N> {
637    type Primitives = N::Primitives;
638}
639
640impl<N: ProviderNodeTypes> StaticFileProviderFactory for ConsistentProvider<N> {
641    fn static_file_provider(&self) -> StaticFileProvider<N::Primitives> {
642        self.storage_provider.static_file_provider()
643    }
644}
645
646impl<N: ProviderNodeTypes> HeaderProvider for ConsistentProvider<N> {
647    type Header = HeaderTy<N>;
648
649    fn header(&self, block_hash: &BlockHash) -> ProviderResult<Option<Self::Header>> {
650        self.get_in_memory_or_storage_by_block(
651            (*block_hash).into(),
652            |db_provider| db_provider.header(block_hash),
653            |block_state| Ok(Some(block_state.block_ref().recovered_block().clone_header())),
654        )
655    }
656
657    fn header_by_number(&self, num: BlockNumber) -> ProviderResult<Option<Self::Header>> {
658        self.get_in_memory_or_storage_by_block(
659            num.into(),
660            |db_provider| db_provider.header_by_number(num),
661            |block_state| Ok(Some(block_state.block_ref().recovered_block().clone_header())),
662        )
663    }
664
665    fn header_td(&self, hash: &BlockHash) -> ProviderResult<Option<U256>> {
666        if let Some(num) = self.block_number(*hash)? {
667            self.header_td_by_number(num)
668        } else {
669            Ok(None)
670        }
671    }
672
673    fn header_td_by_number(&self, number: BlockNumber) -> ProviderResult<Option<U256>> {
674        let number = if self.head_block.as_ref().map(|b| b.block_on_chain(number.into())).is_some()
675        {
676            // If the block exists in memory, we should return a TD for it.
677            //
678            // The canonical in memory state should only store post-merge blocks. Post-merge blocks
679            // have zero difficulty. This means we can use the total difficulty for the last
680            // finalized block number if present (so that we are not affected by reorgs), if not the
681            // last number in the database will be used.
682            if let Some(last_finalized_num_hash) =
683                self.canonical_in_memory_state.get_finalized_num_hash()
684            {
685                last_finalized_num_hash.number
686            } else {
687                self.last_block_number()?
688            }
689        } else {
690            // Otherwise, return what we have on disk for the input block
691            number
692        };
693        self.storage_provider.header_td_by_number(number)
694    }
695
696    fn headers_range(
697        &self,
698        range: impl RangeBounds<BlockNumber>,
699    ) -> ProviderResult<Vec<Self::Header>> {
700        self.get_in_memory_or_storage_by_block_range_while(
701            range,
702            |db_provider, range, _| db_provider.headers_range(range),
703            |block_state, _| Some(block_state.block_ref().recovered_block().header().clone()),
704            |_| true,
705        )
706    }
707
708    fn sealed_header(
709        &self,
710        number: BlockNumber,
711    ) -> ProviderResult<Option<SealedHeader<Self::Header>>> {
712        self.get_in_memory_or_storage_by_block(
713            number.into(),
714            |db_provider| db_provider.sealed_header(number),
715            |block_state| Ok(Some(block_state.block_ref().recovered_block().clone_sealed_header())),
716        )
717    }
718
719    fn sealed_headers_range(
720        &self,
721        range: impl RangeBounds<BlockNumber>,
722    ) -> ProviderResult<Vec<SealedHeader<Self::Header>>> {
723        self.get_in_memory_or_storage_by_block_range_while(
724            range,
725            |db_provider, range, _| db_provider.sealed_headers_range(range),
726            |block_state, _| Some(block_state.block_ref().recovered_block().clone_sealed_header()),
727            |_| true,
728        )
729    }
730
731    fn sealed_headers_while(
732        &self,
733        range: impl RangeBounds<BlockNumber>,
734        predicate: impl FnMut(&SealedHeader<Self::Header>) -> bool,
735    ) -> ProviderResult<Vec<SealedHeader<Self::Header>>> {
736        self.get_in_memory_or_storage_by_block_range_while(
737            range,
738            |db_provider, range, predicate| db_provider.sealed_headers_while(range, predicate),
739            |block_state, predicate| {
740                let header = block_state.block_ref().recovered_block().sealed_header();
741                predicate(header).then(|| header.clone())
742            },
743            predicate,
744        )
745    }
746}
747
748impl<N: ProviderNodeTypes> BlockHashReader for ConsistentProvider<N> {
749    fn block_hash(&self, number: u64) -> ProviderResult<Option<B256>> {
750        self.get_in_memory_or_storage_by_block(
751            number.into(),
752            |db_provider| db_provider.block_hash(number),
753            |block_state| Ok(Some(block_state.hash())),
754        )
755    }
756
757    fn canonical_hashes_range(
758        &self,
759        start: BlockNumber,
760        end: BlockNumber,
761    ) -> ProviderResult<Vec<B256>> {
762        self.get_in_memory_or_storage_by_block_range_while(
763            start..end,
764            |db_provider, inclusive_range, _| {
765                db_provider
766                    .canonical_hashes_range(*inclusive_range.start(), *inclusive_range.end() + 1)
767            },
768            |block_state, _| Some(block_state.hash()),
769            |_| true,
770        )
771    }
772}
773
774impl<N: ProviderNodeTypes> BlockNumReader for ConsistentProvider<N> {
775    fn chain_info(&self) -> ProviderResult<ChainInfo> {
776        let best_number = self.best_block_number()?;
777        Ok(ChainInfo { best_hash: self.block_hash(best_number)?.unwrap_or_default(), best_number })
778    }
779
780    fn best_block_number(&self) -> ProviderResult<BlockNumber> {
781        self.head_block.as_ref().map(|b| Ok(b.number())).unwrap_or_else(|| self.last_block_number())
782    }
783
784    fn last_block_number(&self) -> ProviderResult<BlockNumber> {
785        self.storage_provider.last_block_number()
786    }
787
788    fn block_number(&self, hash: B256) -> ProviderResult<Option<BlockNumber>> {
789        self.get_in_memory_or_storage_by_block(
790            hash.into(),
791            |db_provider| db_provider.block_number(hash),
792            |block_state| Ok(Some(block_state.number())),
793        )
794    }
795}
796
797impl<N: ProviderNodeTypes> BlockIdReader for ConsistentProvider<N> {
798    fn pending_block_num_hash(&self) -> ProviderResult<Option<BlockNumHash>> {
799        Ok(self.canonical_in_memory_state.pending_block_num_hash())
800    }
801
802    fn safe_block_num_hash(&self) -> ProviderResult<Option<BlockNumHash>> {
803        Ok(self.canonical_in_memory_state.get_safe_num_hash())
804    }
805
806    fn finalized_block_num_hash(&self) -> ProviderResult<Option<BlockNumHash>> {
807        Ok(self.canonical_in_memory_state.get_finalized_num_hash())
808    }
809}
810
811impl<N: ProviderNodeTypes> BlockReader for ConsistentProvider<N> {
812    type Block = BlockTy<N>;
813
814    fn find_block_by_hash(
815        &self,
816        hash: B256,
817        source: BlockSource,
818    ) -> ProviderResult<Option<Self::Block>> {
819        if matches!(source, BlockSource::Canonical | BlockSource::Any) {
820            if let Some(block) = self.get_in_memory_or_storage_by_block(
821                hash.into(),
822                |db_provider| db_provider.find_block_by_hash(hash, BlockSource::Canonical),
823                |block_state| Ok(Some(block_state.block_ref().recovered_block().clone_block())),
824            )? {
825                return Ok(Some(block))
826            }
827        }
828
829        if matches!(source, BlockSource::Pending | BlockSource::Any) {
830            return Ok(self
831                .canonical_in_memory_state
832                .pending_block()
833                .filter(|b| b.hash() == hash)
834                .map(|b| b.into_block()))
835        }
836
837        Ok(None)
838    }
839
840    fn block(&self, id: BlockHashOrNumber) -> ProviderResult<Option<Self::Block>> {
841        self.get_in_memory_or_storage_by_block(
842            id,
843            |db_provider| db_provider.block(id),
844            |block_state| Ok(Some(block_state.block_ref().recovered_block().clone_block())),
845        )
846    }
847
848    fn pending_block(&self) -> ProviderResult<Option<RecoveredBlock<Self::Block>>> {
849        Ok(self.canonical_in_memory_state.pending_recovered_block())
850    }
851
852    fn pending_block_and_receipts(
853        &self,
854    ) -> ProviderResult<Option<(RecoveredBlock<Self::Block>, Vec<Self::Receipt>)>> {
855        Ok(self.canonical_in_memory_state.pending_block_and_receipts())
856    }
857
858    /// Returns the block with senders with matching number or hash from database.
859    ///
860    /// **NOTE: If [`TransactionVariant::NoHash`] is provided then the transactions have invalid
861    /// hashes, since they would need to be calculated on the spot, and we want fast querying.**
862    ///
863    /// Returns `None` if block is not found.
864    fn recovered_block(
865        &self,
866        id: BlockHashOrNumber,
867        transaction_kind: TransactionVariant,
868    ) -> ProviderResult<Option<RecoveredBlock<Self::Block>>> {
869        self.get_in_memory_or_storage_by_block(
870            id,
871            |db_provider| db_provider.recovered_block(id, transaction_kind),
872            |block_state| Ok(Some(block_state.block().recovered_block().clone())),
873        )
874    }
875
876    fn sealed_block_with_senders(
877        &self,
878        id: BlockHashOrNumber,
879        transaction_kind: TransactionVariant,
880    ) -> ProviderResult<Option<RecoveredBlock<Self::Block>>> {
881        self.get_in_memory_or_storage_by_block(
882            id,
883            |db_provider| db_provider.sealed_block_with_senders(id, transaction_kind),
884            |block_state| Ok(Some(block_state.block().recovered_block().clone())),
885        )
886    }
887
888    fn block_range(&self, range: RangeInclusive<BlockNumber>) -> ProviderResult<Vec<Self::Block>> {
889        self.get_in_memory_or_storage_by_block_range_while(
890            range,
891            |db_provider, range, _| db_provider.block_range(range),
892            |block_state, _| Some(block_state.block_ref().recovered_block().clone_block()),
893            |_| true,
894        )
895    }
896
897    fn block_with_senders_range(
898        &self,
899        range: RangeInclusive<BlockNumber>,
900    ) -> ProviderResult<Vec<RecoveredBlock<Self::Block>>> {
901        self.get_in_memory_or_storage_by_block_range_while(
902            range,
903            |db_provider, range, _| db_provider.block_with_senders_range(range),
904            |block_state, _| Some(block_state.block().recovered_block().clone()),
905            |_| true,
906        )
907    }
908
909    fn recovered_block_range(
910        &self,
911        range: RangeInclusive<BlockNumber>,
912    ) -> ProviderResult<Vec<RecoveredBlock<Self::Block>>> {
913        self.get_in_memory_or_storage_by_block_range_while(
914            range,
915            |db_provider, range, _| db_provider.recovered_block_range(range),
916            |block_state, _| Some(block_state.block().recovered_block().clone()),
917            |_| true,
918        )
919    }
920}
921
922impl<N: ProviderNodeTypes> TransactionsProvider for ConsistentProvider<N> {
923    type Transaction = TxTy<N>;
924
925    fn transaction_id(&self, tx_hash: TxHash) -> ProviderResult<Option<TxNumber>> {
926        self.get_in_memory_or_storage_by_tx(
927            tx_hash.into(),
928            |db_provider| db_provider.transaction_id(tx_hash),
929            |_, tx_number, _| Ok(Some(tx_number)),
930        )
931    }
932
933    fn transaction_by_id(&self, id: TxNumber) -> ProviderResult<Option<Self::Transaction>> {
934        self.get_in_memory_or_storage_by_tx(
935            id.into(),
936            |provider| provider.transaction_by_id(id),
937            |tx_index, _, block_state| {
938                Ok(block_state
939                    .block_ref()
940                    .recovered_block()
941                    .body()
942                    .transactions()
943                    .get(tx_index)
944                    .cloned())
945            },
946        )
947    }
948
949    fn transaction_by_id_unhashed(
950        &self,
951        id: TxNumber,
952    ) -> ProviderResult<Option<Self::Transaction>> {
953        self.get_in_memory_or_storage_by_tx(
954            id.into(),
955            |provider| provider.transaction_by_id_unhashed(id),
956            |tx_index, _, block_state| {
957                Ok(block_state
958                    .block_ref()
959                    .recovered_block()
960                    .body()
961                    .transactions()
962                    .get(tx_index)
963                    .cloned())
964            },
965        )
966    }
967
968    fn transaction_by_hash(&self, hash: TxHash) -> ProviderResult<Option<Self::Transaction>> {
969        if let Some(tx) = self.head_block.as_ref().and_then(|b| b.transaction_on_chain(hash)) {
970            return Ok(Some(tx))
971        }
972
973        self.storage_provider.transaction_by_hash(hash)
974    }
975
976    fn transaction_by_hash_with_meta(
977        &self,
978        tx_hash: TxHash,
979    ) -> ProviderResult<Option<(Self::Transaction, TransactionMeta)>> {
980        if let Some((tx, meta)) =
981            self.head_block.as_ref().and_then(|b| b.transaction_meta_on_chain(tx_hash))
982        {
983            return Ok(Some((tx, meta)))
984        }
985
986        self.storage_provider.transaction_by_hash_with_meta(tx_hash)
987    }
988
989    fn transaction_block(&self, id: TxNumber) -> ProviderResult<Option<BlockNumber>> {
990        self.get_in_memory_or_storage_by_tx(
991            id.into(),
992            |provider| provider.transaction_block(id),
993            |_, _, block_state| Ok(Some(block_state.block_ref().recovered_block().number())),
994        )
995    }
996
997    fn transactions_by_block(
998        &self,
999        id: BlockHashOrNumber,
1000    ) -> ProviderResult<Option<Vec<Self::Transaction>>> {
1001        self.get_in_memory_or_storage_by_block(
1002            id,
1003            |provider| provider.transactions_by_block(id),
1004            |block_state| {
1005                Ok(Some(block_state.block_ref().recovered_block().body().transactions().to_vec()))
1006            },
1007        )
1008    }
1009
1010    fn transactions_by_block_range(
1011        &self,
1012        range: impl RangeBounds<BlockNumber>,
1013    ) -> ProviderResult<Vec<Vec<Self::Transaction>>> {
1014        self.get_in_memory_or_storage_by_block_range_while(
1015            range,
1016            |db_provider, range, _| db_provider.transactions_by_block_range(range),
1017            |block_state, _| {
1018                Some(block_state.block_ref().recovered_block().body().transactions().to_vec())
1019            },
1020            |_| true,
1021        )
1022    }
1023
1024    fn transactions_by_tx_range(
1025        &self,
1026        range: impl RangeBounds<TxNumber>,
1027    ) -> ProviderResult<Vec<Self::Transaction>> {
1028        self.get_in_memory_or_storage_by_tx_range(
1029            range,
1030            |db_provider, db_range| db_provider.transactions_by_tx_range(db_range),
1031            |index_range, block_state| {
1032                Ok(block_state.block_ref().recovered_block().body().transactions()[index_range]
1033                    .to_vec())
1034            },
1035        )
1036    }
1037
1038    fn senders_by_tx_range(
1039        &self,
1040        range: impl RangeBounds<TxNumber>,
1041    ) -> ProviderResult<Vec<Address>> {
1042        self.get_in_memory_or_storage_by_tx_range(
1043            range,
1044            |db_provider, db_range| db_provider.senders_by_tx_range(db_range),
1045            |index_range, block_state| {
1046                Ok(block_state.block_ref().recovered_block.senders()[index_range].to_vec())
1047            },
1048        )
1049    }
1050
1051    fn transaction_sender(&self, id: TxNumber) -> ProviderResult<Option<Address>> {
1052        self.get_in_memory_or_storage_by_tx(
1053            id.into(),
1054            |provider| provider.transaction_sender(id),
1055            |tx_index, _, block_state| {
1056                Ok(block_state.block_ref().recovered_block.senders().get(tx_index).copied())
1057            },
1058        )
1059    }
1060}
1061
1062impl<N: ProviderNodeTypes> ReceiptProvider for ConsistentProvider<N> {
1063    type Receipt = ReceiptTy<N>;
1064
1065    fn receipt(&self, id: TxNumber) -> ProviderResult<Option<Self::Receipt>> {
1066        self.get_in_memory_or_storage_by_tx(
1067            id.into(),
1068            |provider| provider.receipt(id),
1069            |tx_index, _, block_state| {
1070                Ok(block_state.executed_block_receipts().get(tx_index).cloned())
1071            },
1072        )
1073    }
1074
1075    fn receipt_by_hash(&self, hash: TxHash) -> ProviderResult<Option<Self::Receipt>> {
1076        for block_state in self.head_block.iter().flat_map(|b| b.chain()) {
1077            let executed_block = block_state.block_ref();
1078            let block = executed_block.recovered_block();
1079            let receipts = block_state.executed_block_receipts();
1080
1081            // assuming 1:1 correspondence between transactions and receipts
1082            debug_assert_eq!(
1083                block.body().transactions().len(),
1084                receipts.len(),
1085                "Mismatch between transaction and receipt count"
1086            );
1087
1088            if let Some(tx_index) =
1089                block.body().transactions_iter().position(|tx| tx.trie_hash() == hash)
1090            {
1091                // safe to use tx_index for receipts due to 1:1 correspondence
1092                return Ok(receipts.get(tx_index).cloned());
1093            }
1094        }
1095
1096        self.storage_provider.receipt_by_hash(hash)
1097    }
1098
1099    fn receipts_by_block(
1100        &self,
1101        block: BlockHashOrNumber,
1102    ) -> ProviderResult<Option<Vec<Self::Receipt>>> {
1103        self.get_in_memory_or_storage_by_block(
1104            block,
1105            |db_provider| db_provider.receipts_by_block(block),
1106            |block_state| Ok(Some(block_state.executed_block_receipts())),
1107        )
1108    }
1109
1110    fn receipts_by_tx_range(
1111        &self,
1112        range: impl RangeBounds<TxNumber>,
1113    ) -> ProviderResult<Vec<Self::Receipt>> {
1114        self.get_in_memory_or_storage_by_tx_range(
1115            range,
1116            |db_provider, db_range| db_provider.receipts_by_tx_range(db_range),
1117            |index_range, block_state| {
1118                Ok(block_state.executed_block_receipts().drain(index_range).collect())
1119            },
1120        )
1121    }
1122
1123    fn receipts_by_block_range(
1124        &self,
1125        block_range: RangeInclusive<BlockNumber>,
1126    ) -> ProviderResult<Vec<Vec<Self::Receipt>>> {
1127        self.storage_provider.receipts_by_block_range(block_range)
1128    }
1129}
1130
1131impl<N: ProviderNodeTypes> ReceiptProviderIdExt for ConsistentProvider<N> {
1132    fn receipts_by_block_id(&self, block: BlockId) -> ProviderResult<Option<Vec<Self::Receipt>>> {
1133        match block {
1134            BlockId::Hash(rpc_block_hash) => {
1135                let mut receipts = self.receipts_by_block(rpc_block_hash.block_hash.into())?;
1136                if receipts.is_none() && !rpc_block_hash.require_canonical.unwrap_or(false) {
1137                    if let Some(state) = self
1138                        .head_block
1139                        .as_ref()
1140                        .and_then(|b| b.block_on_chain(rpc_block_hash.block_hash.into()))
1141                    {
1142                        receipts = Some(state.executed_block_receipts());
1143                    }
1144                }
1145                Ok(receipts)
1146            }
1147            BlockId::Number(num_tag) => match num_tag {
1148                BlockNumberOrTag::Pending => Ok(self
1149                    .canonical_in_memory_state
1150                    .pending_state()
1151                    .map(|block_state| block_state.executed_block_receipts())),
1152                _ => {
1153                    if let Some(num) = self.convert_block_number(num_tag)? {
1154                        self.receipts_by_block(num.into())
1155                    } else {
1156                        Ok(None)
1157                    }
1158                }
1159            },
1160        }
1161    }
1162}
1163
1164impl<N: ProviderNodeTypes> BlockBodyIndicesProvider for ConsistentProvider<N> {
1165    fn block_body_indices(
1166        &self,
1167        number: BlockNumber,
1168    ) -> ProviderResult<Option<StoredBlockBodyIndices>> {
1169        self.get_in_memory_or_storage_by_block(
1170            number.into(),
1171            |db_provider| db_provider.block_body_indices(number),
1172            |block_state| {
1173                // Find the last block indices on database
1174                let last_storage_block_number = block_state.anchor().number;
1175                let mut stored_indices = self
1176                    .storage_provider
1177                    .block_body_indices(last_storage_block_number)?
1178                    .ok_or(ProviderError::BlockBodyIndicesNotFound(last_storage_block_number))?;
1179
1180                // Prepare our block indices
1181                stored_indices.first_tx_num = stored_indices.next_tx_num();
1182                stored_indices.tx_count = 0;
1183
1184                // Iterate from the lowest block in memory until our target block
1185                for state in block_state.chain().collect::<Vec<_>>().into_iter().rev() {
1186                    let block_tx_count =
1187                        state.block_ref().recovered_block().body().transactions().len() as u64;
1188                    if state.block_ref().recovered_block().number() == number {
1189                        stored_indices.tx_count = block_tx_count;
1190                    } else {
1191                        stored_indices.first_tx_num += block_tx_count;
1192                    }
1193                }
1194
1195                Ok(Some(stored_indices))
1196            },
1197        )
1198    }
1199
1200    fn block_body_indices_range(
1201        &self,
1202        range: RangeInclusive<BlockNumber>,
1203    ) -> ProviderResult<Vec<StoredBlockBodyIndices>> {
1204        range.map_while(|b| self.block_body_indices(b).transpose()).collect()
1205    }
1206}
1207
1208impl<N: ProviderNodeTypes> StageCheckpointReader for ConsistentProvider<N> {
1209    fn get_stage_checkpoint(&self, id: StageId) -> ProviderResult<Option<StageCheckpoint>> {
1210        self.storage_provider.get_stage_checkpoint(id)
1211    }
1212
1213    fn get_stage_checkpoint_progress(&self, id: StageId) -> ProviderResult<Option<Vec<u8>>> {
1214        self.storage_provider.get_stage_checkpoint_progress(id)
1215    }
1216
1217    fn get_all_checkpoints(&self) -> ProviderResult<Vec<(String, StageCheckpoint)>> {
1218        self.storage_provider.get_all_checkpoints()
1219    }
1220}
1221
1222impl<N: ProviderNodeTypes> PruneCheckpointReader for ConsistentProvider<N> {
1223    fn get_prune_checkpoint(
1224        &self,
1225        segment: PruneSegment,
1226    ) -> ProviderResult<Option<PruneCheckpoint>> {
1227        self.storage_provider.get_prune_checkpoint(segment)
1228    }
1229
1230    fn get_prune_checkpoints(&self) -> ProviderResult<Vec<(PruneSegment, PruneCheckpoint)>> {
1231        self.storage_provider.get_prune_checkpoints()
1232    }
1233}
1234
1235impl<N: ProviderNodeTypes> ChainSpecProvider for ConsistentProvider<N> {
1236    type ChainSpec = N::ChainSpec;
1237
1238    fn chain_spec(&self) -> Arc<N::ChainSpec> {
1239        ChainSpecProvider::chain_spec(&self.storage_provider)
1240    }
1241}
1242
1243impl<N: ProviderNodeTypes> BlockReaderIdExt for ConsistentProvider<N> {
1244    fn block_by_id(&self, id: BlockId) -> ProviderResult<Option<Self::Block>> {
1245        match id {
1246            BlockId::Number(num) => self.block_by_number_or_tag(num),
1247            BlockId::Hash(hash) => {
1248                // TODO: should we only apply this for the RPCs that are listed in EIP-1898?
1249                // so not at the provider level?
1250                // if we decide to do this at a higher level, then we can make this an automatic
1251                // trait impl
1252                if Some(true) == hash.require_canonical {
1253                    // check the database, canonical blocks are only stored in the database
1254                    self.find_block_by_hash(hash.block_hash, BlockSource::Canonical)
1255                } else {
1256                    self.block_by_hash(hash.block_hash)
1257                }
1258            }
1259        }
1260    }
1261
1262    fn header_by_number_or_tag(&self, id: BlockNumberOrTag) -> ProviderResult<Option<HeaderTy<N>>> {
1263        Ok(match id {
1264            BlockNumberOrTag::Latest => {
1265                Some(self.canonical_in_memory_state.get_canonical_head().unseal())
1266            }
1267            BlockNumberOrTag::Finalized => {
1268                self.canonical_in_memory_state.get_finalized_header().map(|h| h.unseal())
1269            }
1270            BlockNumberOrTag::Safe => {
1271                self.canonical_in_memory_state.get_safe_header().map(|h| h.unseal())
1272            }
1273            BlockNumberOrTag::Earliest => self.header_by_number(self.earliest_block_number()?)?,
1274            BlockNumberOrTag::Pending => self.canonical_in_memory_state.pending_header(),
1275
1276            BlockNumberOrTag::Number(num) => self.header_by_number(num)?,
1277        })
1278    }
1279
1280    fn sealed_header_by_number_or_tag(
1281        &self,
1282        id: BlockNumberOrTag,
1283    ) -> ProviderResult<Option<SealedHeader<HeaderTy<N>>>> {
1284        match id {
1285            BlockNumberOrTag::Latest => {
1286                Ok(Some(self.canonical_in_memory_state.get_canonical_head()))
1287            }
1288            BlockNumberOrTag::Finalized => {
1289                Ok(self.canonical_in_memory_state.get_finalized_header())
1290            }
1291            BlockNumberOrTag::Safe => Ok(self.canonical_in_memory_state.get_safe_header()),
1292            BlockNumberOrTag::Earliest => self
1293                .header_by_number(self.earliest_block_number()?)?
1294                .map_or_else(|| Ok(None), |h| Ok(Some(SealedHeader::seal_slow(h)))),
1295            BlockNumberOrTag::Pending => Ok(self.canonical_in_memory_state.pending_sealed_header()),
1296            BlockNumberOrTag::Number(num) => self
1297                .header_by_number(num)?
1298                .map_or_else(|| Ok(None), |h| Ok(Some(SealedHeader::seal_slow(h)))),
1299        }
1300    }
1301
1302    fn sealed_header_by_id(
1303        &self,
1304        id: BlockId,
1305    ) -> ProviderResult<Option<SealedHeader<HeaderTy<N>>>> {
1306        Ok(match id {
1307            BlockId::Number(num) => self.sealed_header_by_number_or_tag(num)?,
1308            BlockId::Hash(hash) => self.header(&hash.block_hash)?.map(SealedHeader::seal_slow),
1309        })
1310    }
1311
1312    fn header_by_id(&self, id: BlockId) -> ProviderResult<Option<HeaderTy<N>>> {
1313        Ok(match id {
1314            BlockId::Number(num) => self.header_by_number_or_tag(num)?,
1315            BlockId::Hash(hash) => self.header(&hash.block_hash)?,
1316        })
1317    }
1318}
1319
1320impl<N: ProviderNodeTypes> StorageChangeSetReader for ConsistentProvider<N> {
1321    fn storage_changeset(
1322        &self,
1323        block_number: BlockNumber,
1324    ) -> ProviderResult<Vec<(BlockNumberAddress, StorageEntry)>> {
1325        if let Some(state) =
1326            self.head_block.as_ref().and_then(|b| b.block_on_chain(block_number.into()))
1327        {
1328            let changesets = state
1329                .block()
1330                .execution_output
1331                .bundle
1332                .reverts
1333                .clone()
1334                .to_plain_state_reverts()
1335                .storage
1336                .into_iter()
1337                .flatten()
1338                .flat_map(|revert: PlainStorageRevert| {
1339                    revert.storage_revert.into_iter().map(move |(key, value)| {
1340                        (
1341                            BlockNumberAddress((block_number, revert.address)),
1342                            StorageEntry { key: key.into(), value: value.to_previous_value() },
1343                        )
1344                    })
1345                })
1346                .collect();
1347            Ok(changesets)
1348        } else {
1349            // Perform checks on whether or not changesets exist for the block.
1350
1351            // No prune checkpoint means history should exist and we should `unwrap_or(true)`
1352            let storage_history_exists = self
1353                .storage_provider
1354                .get_prune_checkpoint(PruneSegment::StorageHistory)?
1355                .and_then(|checkpoint| {
1356                    // return true if the block number is ahead of the prune checkpoint.
1357                    //
1358                    // The checkpoint stores the highest pruned block number, so we should make
1359                    // sure the block_number is strictly greater.
1360                    checkpoint.block_number.map(|checkpoint| block_number > checkpoint)
1361                })
1362                .unwrap_or(true);
1363
1364            if !storage_history_exists {
1365                return Err(ProviderError::StateAtBlockPruned(block_number))
1366            }
1367
1368            self.storage_provider.storage_changeset(block_number)
1369        }
1370    }
1371}
1372
1373impl<N: ProviderNodeTypes> ChangeSetReader for ConsistentProvider<N> {
1374    fn account_block_changeset(
1375        &self,
1376        block_number: BlockNumber,
1377    ) -> ProviderResult<Vec<AccountBeforeTx>> {
1378        if let Some(state) =
1379            self.head_block.as_ref().and_then(|b| b.block_on_chain(block_number.into()))
1380        {
1381            let changesets = state
1382                .block_ref()
1383                .execution_output
1384                .bundle
1385                .reverts
1386                .clone()
1387                .to_plain_state_reverts()
1388                .accounts
1389                .into_iter()
1390                .flatten()
1391                .map(|(address, info)| AccountBeforeTx { address, info: info.map(Into::into) })
1392                .collect();
1393            Ok(changesets)
1394        } else {
1395            // Perform checks on whether or not changesets exist for the block.
1396
1397            // No prune checkpoint means history should exist and we should `unwrap_or(true)`
1398            let account_history_exists = self
1399                .storage_provider
1400                .get_prune_checkpoint(PruneSegment::AccountHistory)?
1401                .and_then(|checkpoint| {
1402                    // return true if the block number is ahead of the prune checkpoint.
1403                    //
1404                    // The checkpoint stores the highest pruned block number, so we should make
1405                    // sure the block_number is strictly greater.
1406                    checkpoint.block_number.map(|checkpoint| block_number > checkpoint)
1407                })
1408                .unwrap_or(true);
1409
1410            if !account_history_exists {
1411                return Err(ProviderError::StateAtBlockPruned(block_number))
1412            }
1413
1414            self.storage_provider.account_block_changeset(block_number)
1415        }
1416    }
1417}
1418
1419impl<N: ProviderNodeTypes> AccountReader for ConsistentProvider<N> {
1420    /// Get basic account information.
1421    fn basic_account(&self, address: &Address) -> ProviderResult<Option<Account>> {
1422        // use latest state provider
1423        let state_provider = self.latest_ref()?;
1424        state_provider.basic_account(address)
1425    }
1426}
1427
1428impl<N: ProviderNodeTypes> StateReader for ConsistentProvider<N> {
1429    type Receipt = ReceiptTy<N>;
1430
1431    /// Re-constructs the [`ExecutionOutcome`] from in-memory and database state, if necessary.
1432    ///
1433    /// If data for the block does not exist, this will return [`None`].
1434    ///
1435    /// NOTE: This cannot be called safely in a loop outside of the blockchain tree thread. This is
1436    /// because the [`CanonicalInMemoryState`] could change during a reorg, causing results to be
1437    /// inconsistent. Currently this can safely be called within the blockchain tree thread,
1438    /// because the tree thread is responsible for modifying the [`CanonicalInMemoryState`] in the
1439    /// first place.
1440    fn get_state(
1441        &self,
1442        block: BlockNumber,
1443    ) -> ProviderResult<Option<ExecutionOutcome<Self::Receipt>>> {
1444        if let Some(state) = self.head_block.as_ref().and_then(|b| b.block_on_chain(block.into())) {
1445            let state = state.block_ref().execution_outcome().clone();
1446            Ok(Some(state))
1447        } else {
1448            Self::get_state(self, block..=block)
1449        }
1450    }
1451}
1452
1453#[cfg(test)]
1454mod tests {
1455    use crate::{
1456        providers::blockchain_provider::BlockchainProvider,
1457        test_utils::create_test_provider_factory, BlockWriter,
1458    };
1459    use alloy_eips::BlockHashOrNumber;
1460    use alloy_primitives::B256;
1461    use itertools::Itertools;
1462    use rand::Rng;
1463    use reth_chain_state::{
1464        ExecutedBlock, ExecutedBlockWithTrieUpdates, ExecutedTrieUpdates, NewCanonicalChain,
1465    };
1466    use reth_db_api::models::AccountBeforeTx;
1467    use reth_ethereum_primitives::Block;
1468    use reth_execution_types::ExecutionOutcome;
1469    use reth_primitives_traits::{RecoveredBlock, SealedBlock};
1470    use reth_storage_api::{BlockReader, BlockSource, ChangeSetReader};
1471    use reth_testing_utils::generators::{
1472        self, random_block_range, random_changeset_range, random_eoa_accounts, BlockRangeParams,
1473    };
1474    use revm_database::BundleState;
1475    use std::{
1476        ops::{Bound, Range, RangeBounds},
1477        sync::Arc,
1478    };
1479
1480    const TEST_BLOCKS_COUNT: usize = 5;
1481
1482    fn random_blocks(
1483        rng: &mut impl Rng,
1484        database_blocks: usize,
1485        in_memory_blocks: usize,
1486        requests_count: Option<Range<u8>>,
1487        withdrawals_count: Option<Range<u8>>,
1488        tx_count: impl RangeBounds<u8>,
1489    ) -> (Vec<SealedBlock<Block>>, Vec<SealedBlock<Block>>) {
1490        let block_range = (database_blocks + in_memory_blocks - 1) as u64;
1491
1492        let tx_start = match tx_count.start_bound() {
1493            Bound::Included(&n) | Bound::Excluded(&n) => n,
1494            Bound::Unbounded => u8::MIN,
1495        };
1496        let tx_end = match tx_count.end_bound() {
1497            Bound::Included(&n) | Bound::Excluded(&n) => n + 1,
1498            Bound::Unbounded => u8::MAX,
1499        };
1500
1501        let blocks = random_block_range(
1502            rng,
1503            0..=block_range,
1504            BlockRangeParams {
1505                parent: Some(B256::ZERO),
1506                tx_count: tx_start..tx_end,
1507                requests_count,
1508                withdrawals_count,
1509            },
1510        );
1511        let (database_blocks, in_memory_blocks) = blocks.split_at(database_blocks);
1512        (database_blocks.to_vec(), in_memory_blocks.to_vec())
1513    }
1514
1515    #[test]
1516    fn test_block_reader_find_block_by_hash() -> eyre::Result<()> {
1517        // Initialize random number generator and provider factory
1518        let mut rng = generators::rng();
1519        let factory = create_test_provider_factory();
1520
1521        // Generate 10 random blocks and split into database and in-memory blocks
1522        let blocks = random_block_range(
1523            &mut rng,
1524            0..=10,
1525            BlockRangeParams { parent: Some(B256::ZERO), tx_count: 0..1, ..Default::default() },
1526        );
1527        let (database_blocks, in_memory_blocks) = blocks.split_at(5);
1528
1529        // Insert first 5 blocks into the database
1530        let provider_rw = factory.provider_rw()?;
1531        for block in database_blocks {
1532            provider_rw.insert_historical_block(
1533                block.clone().try_recover().expect("failed to seal block with senders"),
1534            )?;
1535        }
1536        provider_rw.commit()?;
1537
1538        // Create a new provider
1539        let provider = BlockchainProvider::new(factory)?;
1540        let consistent_provider = provider.consistent_provider()?;
1541
1542        // Useful blocks
1543        let first_db_block = database_blocks.first().unwrap();
1544        let first_in_mem_block = in_memory_blocks.first().unwrap();
1545        let last_in_mem_block = in_memory_blocks.last().unwrap();
1546
1547        // No block in memory before setting in memory state
1548        assert_eq!(
1549            consistent_provider.find_block_by_hash(first_in_mem_block.hash(), BlockSource::Any)?,
1550            None
1551        );
1552        assert_eq!(
1553            consistent_provider
1554                .find_block_by_hash(first_in_mem_block.hash(), BlockSource::Canonical)?,
1555            None
1556        );
1557        // No pending block in memory
1558        assert_eq!(
1559            consistent_provider
1560                .find_block_by_hash(first_in_mem_block.hash(), BlockSource::Pending)?,
1561            None
1562        );
1563
1564        // Insert first block into the in-memory state
1565        let in_memory_block_senders =
1566            first_in_mem_block.senders().expect("failed to recover senders");
1567        let chain = NewCanonicalChain::Commit {
1568            new: vec![ExecutedBlockWithTrieUpdates::new(
1569                Arc::new(RecoveredBlock::new_sealed(
1570                    first_in_mem_block.clone(),
1571                    in_memory_block_senders,
1572                )),
1573                Default::default(),
1574                Default::default(),
1575                ExecutedTrieUpdates::empty(),
1576            )],
1577        };
1578        consistent_provider.canonical_in_memory_state.update_chain(chain);
1579        let consistent_provider = provider.consistent_provider()?;
1580
1581        // Now the block should be found in memory
1582        assert_eq!(
1583            consistent_provider.find_block_by_hash(first_in_mem_block.hash(), BlockSource::Any)?,
1584            Some(first_in_mem_block.clone().into_block())
1585        );
1586        assert_eq!(
1587            consistent_provider
1588                .find_block_by_hash(first_in_mem_block.hash(), BlockSource::Canonical)?,
1589            Some(first_in_mem_block.clone().into_block())
1590        );
1591
1592        // Find the first block in database by hash
1593        assert_eq!(
1594            consistent_provider.find_block_by_hash(first_db_block.hash(), BlockSource::Any)?,
1595            Some(first_db_block.clone().into_block())
1596        );
1597        assert_eq!(
1598            consistent_provider
1599                .find_block_by_hash(first_db_block.hash(), BlockSource::Canonical)?,
1600            Some(first_db_block.clone().into_block())
1601        );
1602
1603        // No pending block in database
1604        assert_eq!(
1605            consistent_provider.find_block_by_hash(first_db_block.hash(), BlockSource::Pending)?,
1606            None
1607        );
1608
1609        // Insert the last block into the pending state
1610        provider.canonical_in_memory_state.set_pending_block(ExecutedBlockWithTrieUpdates {
1611            block: ExecutedBlock {
1612                recovered_block: Arc::new(RecoveredBlock::new_sealed(
1613                    last_in_mem_block.clone(),
1614                    Default::default(),
1615                )),
1616                execution_output: Default::default(),
1617                hashed_state: Default::default(),
1618            },
1619            trie: ExecutedTrieUpdates::empty(),
1620        });
1621
1622        // Now the last block should be found in memory
1623        assert_eq!(
1624            consistent_provider
1625                .find_block_by_hash(last_in_mem_block.hash(), BlockSource::Pending)?,
1626            Some(last_in_mem_block.clone_block())
1627        );
1628
1629        Ok(())
1630    }
1631
1632    #[test]
1633    fn test_block_reader_block() -> eyre::Result<()> {
1634        // Initialize random number generator and provider factory
1635        let mut rng = generators::rng();
1636        let factory = create_test_provider_factory();
1637
1638        // Generate 10 random blocks and split into database and in-memory blocks
1639        let blocks = random_block_range(
1640            &mut rng,
1641            0..=10,
1642            BlockRangeParams { parent: Some(B256::ZERO), tx_count: 0..1, ..Default::default() },
1643        );
1644        let (database_blocks, in_memory_blocks) = blocks.split_at(5);
1645
1646        // Insert first 5 blocks into the database
1647        let provider_rw = factory.provider_rw()?;
1648        for block in database_blocks {
1649            provider_rw.insert_historical_block(
1650                block.clone().try_recover().expect("failed to seal block with senders"),
1651            )?;
1652        }
1653        provider_rw.commit()?;
1654
1655        // Create a new provider
1656        let provider = BlockchainProvider::new(factory)?;
1657        let consistent_provider = provider.consistent_provider()?;
1658
1659        // First in memory block
1660        let first_in_mem_block = in_memory_blocks.first().unwrap();
1661        // First database block
1662        let first_db_block = database_blocks.first().unwrap();
1663
1664        // First in memory block should not be found yet as not integrated to the in-memory state
1665        assert_eq!(
1666            consistent_provider.block(BlockHashOrNumber::Hash(first_in_mem_block.hash()))?,
1667            None
1668        );
1669        assert_eq!(
1670            consistent_provider.block(BlockHashOrNumber::Number(first_in_mem_block.number))?,
1671            None
1672        );
1673
1674        // Insert first block into the in-memory state
1675        let in_memory_block_senders =
1676            first_in_mem_block.senders().expect("failed to recover senders");
1677        let chain = NewCanonicalChain::Commit {
1678            new: vec![ExecutedBlockWithTrieUpdates::new(
1679                Arc::new(RecoveredBlock::new_sealed(
1680                    first_in_mem_block.clone(),
1681                    in_memory_block_senders,
1682                )),
1683                Default::default(),
1684                Default::default(),
1685                ExecutedTrieUpdates::empty(),
1686            )],
1687        };
1688        consistent_provider.canonical_in_memory_state.update_chain(chain);
1689
1690        let consistent_provider = provider.consistent_provider()?;
1691
1692        // First in memory block should be found
1693        assert_eq!(
1694            consistent_provider.block(BlockHashOrNumber::Hash(first_in_mem_block.hash()))?,
1695            Some(first_in_mem_block.clone().into_block())
1696        );
1697        assert_eq!(
1698            consistent_provider.block(BlockHashOrNumber::Number(first_in_mem_block.number))?,
1699            Some(first_in_mem_block.clone().into_block())
1700        );
1701
1702        // First database block should be found
1703        assert_eq!(
1704            consistent_provider.block(BlockHashOrNumber::Hash(first_db_block.hash()))?,
1705            Some(first_db_block.clone().into_block())
1706        );
1707        assert_eq!(
1708            consistent_provider.block(BlockHashOrNumber::Number(first_db_block.number))?,
1709            Some(first_db_block.clone().into_block())
1710        );
1711
1712        Ok(())
1713    }
1714
1715    #[test]
1716    fn test_changeset_reader() -> eyre::Result<()> {
1717        let mut rng = generators::rng();
1718
1719        let (database_blocks, in_memory_blocks) =
1720            random_blocks(&mut rng, TEST_BLOCKS_COUNT, 1, None, None, 0..1);
1721
1722        let first_database_block = database_blocks.first().map(|block| block.number).unwrap();
1723        let last_database_block = database_blocks.last().map(|block| block.number).unwrap();
1724        let first_in_memory_block = in_memory_blocks.first().map(|block| block.number).unwrap();
1725
1726        let accounts = random_eoa_accounts(&mut rng, 2);
1727
1728        let (database_changesets, database_state) = random_changeset_range(
1729            &mut rng,
1730            &database_blocks,
1731            accounts.into_iter().map(|(address, account)| (address, (account, Vec::new()))),
1732            0..0,
1733            0..0,
1734        );
1735        let (in_memory_changesets, in_memory_state) = random_changeset_range(
1736            &mut rng,
1737            &in_memory_blocks,
1738            database_state
1739                .iter()
1740                .map(|(address, (account, storage))| (*address, (*account, storage.clone()))),
1741            0..0,
1742            0..0,
1743        );
1744
1745        let factory = create_test_provider_factory();
1746
1747        let provider_rw = factory.provider_rw()?;
1748        provider_rw.append_blocks_with_state(
1749            database_blocks
1750                .into_iter()
1751                .map(|b| b.try_recover().expect("failed to seal block with senders"))
1752                .collect(),
1753            &ExecutionOutcome {
1754                bundle: BundleState::new(
1755                    database_state.into_iter().map(|(address, (account, _))| {
1756                        (address, None, Some(account.into()), Default::default())
1757                    }),
1758                    database_changesets
1759                        .iter()
1760                        .map(|block_changesets| {
1761                            block_changesets.iter().map(|(address, account, _)| {
1762                                (*address, Some(Some((*account).into())), [])
1763                            })
1764                        })
1765                        .collect::<Vec<_>>(),
1766                    Vec::new(),
1767                ),
1768                first_block: first_database_block,
1769                ..Default::default()
1770            },
1771            Default::default(),
1772        )?;
1773        provider_rw.commit()?;
1774
1775        let provider = BlockchainProvider::new(factory)?;
1776
1777        let in_memory_changesets = in_memory_changesets.into_iter().next().unwrap();
1778        let chain = NewCanonicalChain::Commit {
1779            new: vec![in_memory_blocks
1780                .first()
1781                .map(|block| {
1782                    let senders = block.senders().expect("failed to recover senders");
1783                    ExecutedBlockWithTrieUpdates::new(
1784                        Arc::new(RecoveredBlock::new_sealed(block.clone(), senders)),
1785                        Arc::new(ExecutionOutcome {
1786                            bundle: BundleState::new(
1787                                in_memory_state.into_iter().map(|(address, (account, _))| {
1788                                    (address, None, Some(account.into()), Default::default())
1789                                }),
1790                                [in_memory_changesets.iter().map(|(address, account, _)| {
1791                                    (*address, Some(Some((*account).into())), Vec::new())
1792                                })],
1793                                [],
1794                            ),
1795                            first_block: first_in_memory_block,
1796                            ..Default::default()
1797                        }),
1798                        Default::default(),
1799                        ExecutedTrieUpdates::empty(),
1800                    )
1801                })
1802                .unwrap()],
1803        };
1804        provider.canonical_in_memory_state.update_chain(chain);
1805
1806        let consistent_provider = provider.consistent_provider()?;
1807
1808        assert_eq!(
1809            consistent_provider.account_block_changeset(last_database_block).unwrap(),
1810            database_changesets
1811                .into_iter()
1812                .next_back()
1813                .unwrap()
1814                .into_iter()
1815                .sorted_by_key(|(address, _, _)| *address)
1816                .map(|(address, account, _)| AccountBeforeTx { address, info: Some(account) })
1817                .collect::<Vec<_>>()
1818        );
1819        assert_eq!(
1820            consistent_provider.account_block_changeset(first_in_memory_block).unwrap(),
1821            in_memory_changesets
1822                .into_iter()
1823                .sorted_by_key(|(address, _, _)| *address)
1824                .map(|(address, account, _)| AccountBeforeTx { address, info: Some(account) })
1825                .collect::<Vec<_>>()
1826        );
1827
1828        Ok(())
1829    }
1830}