1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
use super::AuthValidator;
use jsonrpsee_http_client::{HttpRequest, HttpResponse};
use pin_project::pin_project;
use std::{
    future::Future,
    pin::Pin,
    task::{Context, Poll},
};
use tower::{Layer, Service};

/// This is an Http middleware layer that acts as an
/// interceptor for `Authorization` headers. Incoming requests are dispatched to
/// an inner [`AuthValidator`]. Invalid requests are blocked and the validator's error response is
/// returned. Valid requests are instead dispatched to the next layer along the chain.
///
/// # How to integrate
/// ```rust
/// async fn build_layered_rpc_server() {
///     use jsonrpsee::server::ServerBuilder;
///     use reth_rpc_layer::{AuthLayer, JwtAuthValidator, JwtSecret};
///     use std::net::SocketAddr;
///
///     const AUTH_PORT: u32 = 8551;
///     const AUTH_ADDR: &str = "0.0.0.0";
///     const AUTH_SECRET: &str =
///         "f79ae8046bc11c9927afe911db7143c51a806c4a537cc08e0d37140b0192f430";
///
///     let addr = format!("{AUTH_ADDR}:{AUTH_PORT}");
///     let secret = JwtSecret::from_hex(AUTH_SECRET).unwrap();
///     let validator = JwtAuthValidator::new(secret);
///     let layer = AuthLayer::new(validator);
///     let middleware = tower::ServiceBuilder::default().layer(layer);
///
///     let _server = ServerBuilder::default()
///         .set_http_middleware(middleware)
///         .build(addr.parse::<SocketAddr>().unwrap())
///         .await
///         .unwrap();
/// }
/// ```
#[allow(missing_debug_implementations)]
pub struct AuthLayer<V> {
    validator: V,
}

impl<V> AuthLayer<V> {
    /// Creates an instance of [`AuthLayer`].
    /// `validator` is a generic trait able to validate requests (see [`AuthValidator`]).
    pub const fn new(validator: V) -> Self {
        Self { validator }
    }
}

impl<S, V> Layer<S> for AuthLayer<V>
where
    V: Clone,
{
    type Service = AuthService<S, V>;

    fn layer(&self, inner: S) -> Self::Service {
        AuthService { validator: self.validator.clone(), inner }
    }
}

/// This type is the actual implementation of the middleware. It follows the [`Service`]
/// specification to correctly proxy Http requests to its inner service after headers validation.
#[derive(Clone, Debug)]
pub struct AuthService<S, V> {
    /// Performs auth validation logics
    validator: V,
    /// Recipient of authorized Http requests
    inner: S,
}

impl<S, V> Service<HttpRequest> for AuthService<S, V>
where
    S: Service<HttpRequest, Response = HttpResponse>,
    V: AuthValidator,
    Self: Clone,
{
    type Response = HttpResponse;
    type Error = S::Error;
    type Future = ResponseFuture<S::Future>;

    /// If we get polled it means that we dispatched an authorized Http request to the inner layer.
    /// So we just poll the inner layer ourselves.
    fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        self.inner.poll_ready(cx)
    }

    /// This is the entrypoint of the service. We receive an Http request and check the validity of
    /// the authorization header.
    ///
    /// Returns a future that wraps either:
    /// - The inner service future for authorized requests
    /// - An error Http response in case of authorization errors
    fn call(&mut self, req: HttpRequest) -> Self::Future {
        match self.validator.validate(req.headers()) {
            Ok(_) => ResponseFuture::future(self.inner.call(req)),
            Err(res) => ResponseFuture::invalid_auth(res),
        }
    }
}

/// A future representing the response of an RPC request
#[pin_project]
#[allow(missing_debug_implementations)]
pub struct ResponseFuture<F> {
    /// The kind of response future, error or pending
    #[pin]
    kind: Kind<F>,
}

impl<F> ResponseFuture<F> {
    const fn future(future: F) -> Self {
        Self { kind: Kind::Future { future } }
    }

    const fn invalid_auth(err_res: HttpResponse) -> Self {
        Self { kind: Kind::Error { response: Some(err_res) } }
    }
}

#[pin_project(project = KindProj)]
enum Kind<F> {
    Future {
        #[pin]
        future: F,
    },
    Error {
        response: Option<HttpResponse>,
    },
}

impl<F, E> Future for ResponseFuture<F>
where
    F: Future<Output = Result<HttpResponse, E>>,
{
    type Output = F::Output;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        match self.project().kind.project() {
            KindProj::Future { future } => future.poll(cx),
            KindProj::Error { response } => {
                let response = response.take().unwrap();
                Poll::Ready(Ok(response))
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::JwtAuthValidator;
    use alloy_rpc_types_engine::{Claims, JwtError, JwtSecret};
    use jsonrpsee::{
        server::{RandomStringIdProvider, ServerBuilder, ServerHandle},
        RpcModule,
    };
    use reqwest::{header, StatusCode};
    use std::{
        net::SocketAddr,
        time::{SystemTime, UNIX_EPOCH},
    };

    const AUTH_PORT: u32 = 8551;
    const AUTH_ADDR: &str = "0.0.0.0";
    const SECRET: &str = "f79ae8046bc11c9927afe911db7143c51a806c4a537cc08e0d37140b0192f430";

    #[tokio::test]
    async fn test_jwt_layer() {
        // We group all tests into one to avoid individual #[tokio::test]
        // to concurrently spawn a server on the same port.
        valid_jwt().await;
        missing_jwt_error().await;
        wrong_jwt_signature_error().await;
        invalid_issuance_timestamp_error().await;
        jwt_decode_error().await;
    }

    async fn valid_jwt() {
        let claims = Claims { iat: to_u64(SystemTime::now()), exp: Some(10000000000) };
        let secret = JwtSecret::from_hex(SECRET).unwrap(); // Same secret as the server
        let jwt = secret.encode(&claims).unwrap();
        let (status, _) = send_request(Some(jwt)).await;
        assert_eq!(status, StatusCode::OK);
    }

    async fn missing_jwt_error() {
        let (status, body) = send_request(None).await;
        let expected = JwtError::MissingOrInvalidAuthorizationHeader;
        assert_eq!(status, StatusCode::UNAUTHORIZED);
        assert_eq!(body, expected.to_string());
    }

    async fn wrong_jwt_signature_error() {
        // This secret is different from the server. This will generate a
        // different signature
        let secret = JwtSecret::random();
        let claims = Claims { iat: to_u64(SystemTime::now()), exp: Some(10000000000) };
        let jwt = secret.encode(&claims).unwrap();

        let (status, body) = send_request(Some(jwt)).await;
        let expected = JwtError::InvalidSignature;
        assert_eq!(status, StatusCode::UNAUTHORIZED);
        assert_eq!(body, expected.to_string());
    }

    async fn invalid_issuance_timestamp_error() {
        let secret = JwtSecret::from_hex(SECRET).unwrap(); // Same secret as the server

        let iat = to_u64(SystemTime::now()) + 1000;
        let claims = Claims { iat, exp: Some(10000000000) };
        let jwt = secret.encode(&claims).unwrap();

        let (status, body) = send_request(Some(jwt)).await;
        let expected = JwtError::InvalidIssuanceTimestamp;
        assert_eq!(status, StatusCode::UNAUTHORIZED);
        assert_eq!(body, expected.to_string());
    }

    async fn jwt_decode_error() {
        let jwt = "this jwt has serious encoding problems".to_string();
        let (status, body) = send_request(Some(jwt)).await;
        assert_eq!(status, StatusCode::UNAUTHORIZED);
        assert_eq!(body, "JWT decoding error: InvalidToken".to_string());
    }

    async fn send_request(jwt: Option<String>) -> (StatusCode, String) {
        let server = spawn_server().await;
        let client =
            reqwest::Client::builder().timeout(std::time::Duration::from_secs(1)).build().unwrap();

        let body = r#"{"jsonrpc": "2.0", "method": "greet_melkor", "params": [], "id": 1}"#;
        let response = client
            .post(format!("http://{AUTH_ADDR}:{AUTH_PORT}"))
            .bearer_auth(jwt.unwrap_or_default())
            .body(body)
            .header(header::CONTENT_TYPE, "application/json")
            .send()
            .await
            .unwrap();
        let status = response.status();
        let body = response.text().await.unwrap();

        server.stop().unwrap();
        server.stopped().await;

        (status, body)
    }

    /// Spawn a new RPC server equipped with a `JwtLayer` auth middleware.
    async fn spawn_server() -> ServerHandle {
        let secret = JwtSecret::from_hex(SECRET).unwrap();
        let addr = format!("{AUTH_ADDR}:{AUTH_PORT}");
        let validator = JwtAuthValidator::new(secret);
        let layer = AuthLayer::new(validator);
        let middleware = tower::ServiceBuilder::default().layer(layer);

        // Create a layered server
        let server = ServerBuilder::default()
            .set_id_provider(RandomStringIdProvider::new(16))
            .set_http_middleware(middleware)
            .build(addr.parse::<SocketAddr>().unwrap())
            .await
            .unwrap();

        // Create a mock rpc module
        let mut module = RpcModule::new(());
        module.register_method("greet_melkor", |_, _, _| "You are the dark lord").unwrap();

        server.start(module)
    }

    fn to_u64(time: SystemTime) -> u64 {
        time.duration_since(UNIX_EPOCH).unwrap().as_secs()
    }
}