reth_transaction_pool/
identifier.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//! Identifier types for transactions and senders.
use alloy_primitives::Address;
use rustc_hash::FxHashMap;
use std::collections::HashMap;

/// An internal mapping of addresses.
///
/// This assigns a _unique_ [`SenderId`] for a new [`Address`].
/// It has capacity for 2^64 unique addresses.
#[derive(Debug, Default)]
pub struct SenderIdentifiers {
    /// The identifier to use next.
    id: u64,
    /// Assigned [`SenderId`] for an [`Address`].
    address_to_id: HashMap<Address, SenderId>,
    /// Reverse mapping of [`SenderId`] to [`Address`].
    sender_to_address: FxHashMap<SenderId, Address>,
}

impl SenderIdentifiers {
    /// Returns the address for the given identifier.
    #[allow(dead_code)]
    pub fn address(&self, id: &SenderId) -> Option<&Address> {
        self.sender_to_address.get(id)
    }

    /// Returns the [`SenderId`] that belongs to the given address, if it exists
    pub fn sender_id(&self, addr: &Address) -> Option<SenderId> {
        self.address_to_id.get(addr).copied()
    }

    /// Returns the existing [`SenderId`] or assigns a new one if it's missing
    pub fn sender_id_or_create(&mut self, addr: Address) -> SenderId {
        self.sender_id(&addr).unwrap_or_else(|| {
            let id = self.next_id();
            self.address_to_id.insert(addr, id);
            self.sender_to_address.insert(id, addr);
            id
        })
    }

    /// Returns the current identifier and increments the counter.
    fn next_id(&mut self) -> SenderId {
        let id = self.id;
        self.id = self.id.wrapping_add(1);
        id.into()
    }
}

/// A _unique_ identifier for a sender of an address.
///
/// This is the identifier of an internal `address` mapping that is valid in the context of this
/// program.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct SenderId(u64);

impl SenderId {
    /// Returns a `Bound` for [`TransactionId`] starting with nonce `0`
    pub const fn start_bound(self) -> std::ops::Bound<TransactionId> {
        std::ops::Bound::Included(TransactionId::new(self, 0))
    }

    /// Converts the sender to a [`TransactionId`] with the given nonce.
    pub const fn into_transaction_id(self, nonce: u64) -> TransactionId {
        TransactionId::new(self, nonce)
    }
}

impl From<u64> for SenderId {
    fn from(value: u64) -> Self {
        Self(value)
    }
}

/// A unique identifier of a transaction of a Sender.
///
/// This serves as an identifier for dependencies of a transaction:
/// A transaction with a nonce higher than the current state nonce depends on `tx.nonce - 1`.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct TransactionId {
    /// Sender of this transaction
    pub sender: SenderId,
    /// Nonce of this transaction
    pub nonce: u64,
}

impl TransactionId {
    /// Create a new identifier pair
    pub const fn new(sender: SenderId, nonce: u64) -> Self {
        Self { sender, nonce }
    }

    /// Returns the [`TransactionId`] this transaction depends on.
    ///
    /// This returns `transaction_nonce - 1` if `transaction_nonce` is higher than the
    /// `on_chain_nonce`
    pub fn ancestor(transaction_nonce: u64, on_chain_nonce: u64, sender: SenderId) -> Option<Self> {
        (transaction_nonce > on_chain_nonce)
            .then(|| Self::new(sender, transaction_nonce.saturating_sub(1)))
    }

    /// Returns the [`TransactionId`] that would come before this transaction.
    pub fn unchecked_ancestor(&self) -> Option<Self> {
        (self.nonce != 0).then(|| Self::new(self.sender, self.nonce - 1))
    }

    /// Returns the [`TransactionId`] that directly follows this transaction: `self.nonce + 1`
    pub const fn descendant(&self) -> Self {
        Self::new(self.sender, self.next_nonce())
    }

    /// Returns the nonce that follows immediately after this one.
    #[inline]
    pub const fn next_nonce(&self) -> u64 {
        self.nonce + 1
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::collections::BTreeSet;

    #[test]
    fn test_transaction_id_new() {
        let sender = SenderId(1);
        let tx_id = TransactionId::new(sender, 5);
        assert_eq!(tx_id.sender, sender);
        assert_eq!(tx_id.nonce, 5);
    }

    #[test]
    fn test_transaction_id_ancestor() {
        let sender = SenderId(1);

        // Special case with nonce 0 and higher on-chain nonce
        let tx_id = TransactionId::ancestor(0, 1, sender);
        assert_eq!(tx_id, None);

        // Special case with nonce 0 and same on-chain nonce
        let tx_id = TransactionId::ancestor(0, 0, sender);
        assert_eq!(tx_id, None);

        // Ancestor is the previous nonce if the transaction nonce is higher than the on-chain nonce
        let tx_id = TransactionId::ancestor(5, 0, sender);
        assert_eq!(tx_id, Some(TransactionId::new(sender, 4)));

        // No ancestor if the transaction nonce is the same as the on-chain nonce
        let tx_id = TransactionId::ancestor(5, 5, sender);
        assert_eq!(tx_id, None);

        // No ancestor if the transaction nonce is lower than the on-chain nonce
        let tx_id = TransactionId::ancestor(5, 15, sender);
        assert_eq!(tx_id, None);
    }

    #[test]
    fn test_transaction_id_unchecked_ancestor() {
        let sender = SenderId(1);

        // Ancestor is the previous nonce if transaction nonce is higher than 0
        let tx_id = TransactionId::new(sender, 5);
        assert_eq!(tx_id.unchecked_ancestor(), Some(TransactionId::new(sender, 4)));

        // No ancestor if transaction nonce is 0
        let tx_id = TransactionId::new(sender, 0);
        assert_eq!(tx_id.unchecked_ancestor(), None);
    }

    #[test]
    fn test_transaction_id_descendant() {
        let sender = SenderId(1);
        let tx_id = TransactionId::new(sender, 5);
        let descendant = tx_id.descendant();
        assert_eq!(descendant, TransactionId::new(sender, 6));
    }

    #[test]
    fn test_transaction_id_next_nonce() {
        let sender = SenderId(1);
        let tx_id = TransactionId::new(sender, 5);
        assert_eq!(tx_id.next_nonce(), 6);
    }

    #[test]
    fn test_transaction_id_ord_eq_sender() {
        let tx1 = TransactionId::new(100u64.into(), 0u64);
        let tx2 = TransactionId::new(100u64.into(), 1u64);
        assert!(tx2 > tx1);
        let set = BTreeSet::from([tx1, tx2]);
        assert_eq!(set.into_iter().collect::<Vec<_>>(), vec![tx1, tx2]);
    }

    #[test]
    fn test_transaction_id_ord() {
        let tx1 = TransactionId::new(99u64.into(), 0u64);
        let tx2 = TransactionId::new(100u64.into(), 1u64);
        assert!(tx2 > tx1);
        let set = BTreeSet::from([tx1, tx2]);
        assert_eq!(set.into_iter().collect::<Vec<_>>(), vec![tx1, tx2]);
    }

    #[test]
    fn test_address_retrieval() {
        let mut identifiers = SenderIdentifiers::default();
        let address = Address::new([1; 20]);
        let id = identifiers.sender_id_or_create(address);
        assert_eq!(identifiers.address(&id), Some(&address));
    }

    #[test]
    fn test_sender_id_retrieval() {
        let mut identifiers = SenderIdentifiers::default();
        let address = Address::new([1; 20]);
        let id = identifiers.sender_id_or_create(address);
        assert_eq!(identifiers.sender_id(&address), Some(id));
    }

    #[test]
    fn test_sender_id_or_create_existing() {
        let mut identifiers = SenderIdentifiers::default();
        let address = Address::new([1; 20]);
        let id1 = identifiers.sender_id_or_create(address);
        let id2 = identifiers.sender_id_or_create(address);
        assert_eq!(id1, id2);
    }

    #[test]
    fn test_sender_id_or_create_new() {
        let mut identifiers = SenderIdentifiers::default();
        let address1 = Address::new([1; 20]);
        let address2 = Address::new([2; 20]);
        let id1 = identifiers.sender_id_or_create(address1);
        let id2 = identifiers.sender_id_or_create(address2);
        assert_ne!(id1, id2);
    }

    #[test]
    fn test_next_id_wrapping() {
        let mut identifiers = SenderIdentifiers { id: u64::MAX, ..Default::default() };

        // The current ID is `u64::MAX`, the next ID should wrap around to 0.
        let id1 = identifiers.next_id();
        assert_eq!(id1, SenderId(u64::MAX));

        // The next ID should now be 0 because of wrapping.
        let id2 = identifiers.next_id();
        assert_eq!(id2, SenderId(0));

        // And then 1, continuing incrementing.
        let id3 = identifiers.next_id();
        assert_eq!(id3, SenderId(1));
    }

    #[test]
    fn test_sender_id_start_bound() {
        let sender = SenderId(1);
        let start_bound = sender.start_bound();
        if let std::ops::Bound::Included(tx_id) = start_bound {
            assert_eq!(tx_id, TransactionId::new(sender, 0));
        } else {
            panic!("Expected included bound");
        }
    }
}