1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
use crate::{
    hashed_cursor::HashedCursorFactory, prefix_set::TriePrefixSetsMut, proof::Proof,
    trie_cursor::TrieCursorFactory, HashedPostState,
};
use alloy_primitives::{keccak256, Bytes, B256};
use alloy_rlp::{BufMut, Decodable, Encodable};
use itertools::Either;
use reth_execution_errors::{StateProofError, TrieWitnessError};
use reth_primitives::constants::EMPTY_ROOT_HASH;
use reth_trie_common::{
    BranchNode, HashBuilder, Nibbles, TrieAccount, TrieNode, CHILD_INDEX_RANGE,
};
use std::collections::{BTreeMap, HashMap, HashSet};

/// State transition witness for the trie.
#[derive(Debug)]
pub struct TrieWitness<T, H> {
    /// The cursor factory for traversing trie nodes.
    trie_cursor_factory: T,
    /// The factory for hashed cursors.
    hashed_cursor_factory: H,
    /// A set of prefix sets that have changes.
    prefix_sets: TriePrefixSetsMut,
    /// Recorded witness.
    witness: HashMap<B256, Bytes>,
}

impl<T, H> TrieWitness<T, H> {
    /// Creates a new witness generator.
    pub fn new(trie_cursor_factory: T, hashed_cursor_factory: H) -> Self {
        Self {
            trie_cursor_factory,
            hashed_cursor_factory,
            prefix_sets: TriePrefixSetsMut::default(),
            witness: HashMap::default(),
        }
    }

    /// Set the trie cursor factory.
    pub fn with_trie_cursor_factory<TF>(self, trie_cursor_factory: TF) -> TrieWitness<TF, H> {
        TrieWitness {
            trie_cursor_factory,
            hashed_cursor_factory: self.hashed_cursor_factory,
            prefix_sets: self.prefix_sets,
            witness: self.witness,
        }
    }

    /// Set the hashed cursor factory.
    pub fn with_hashed_cursor_factory<HF>(self, hashed_cursor_factory: HF) -> TrieWitness<T, HF> {
        TrieWitness {
            trie_cursor_factory: self.trie_cursor_factory,
            hashed_cursor_factory,
            prefix_sets: self.prefix_sets,
            witness: self.witness,
        }
    }

    /// Set the prefix sets. They have to be mutable in order to allow extension with proof target.
    pub fn with_prefix_sets_mut(mut self, prefix_sets: TriePrefixSetsMut) -> Self {
        self.prefix_sets = prefix_sets;
        self
    }
}

impl<T, H> TrieWitness<T, H>
where
    T: TrieCursorFactory + Clone,
    H: HashedCursorFactory + Clone,
{
    /// Compute the state transition witness for the trie. Gather all required nodes
    /// to apply `state` on top of the current trie state.
    ///
    /// # Arguments
    ///
    /// `state` - state transition containing both modified and touched accounts and storage slots.
    pub fn compute(
        mut self,
        state: HashedPostState,
    ) -> Result<HashMap<B256, Bytes>, TrieWitnessError> {
        let proof_targets = HashMap::from_iter(
            state
                .accounts
                .keys()
                .map(|hashed_address| (*hashed_address, HashSet::default()))
                .chain(state.storages.iter().map(|(hashed_address, storage)| {
                    (*hashed_address, storage.storage.keys().copied().collect())
                })),
        );
        let mut account_multiproof =
            Proof::new(self.trie_cursor_factory.clone(), self.hashed_cursor_factory.clone())
                .with_prefix_sets_mut(self.prefix_sets.clone())
                .with_targets(proof_targets.clone())
                .multiproof()?;

        // Attempt to compute state root from proofs and gather additional
        // information for the witness.
        let mut account_rlp = Vec::with_capacity(128);
        let mut account_trie_nodes = BTreeMap::default();
        for (hashed_address, hashed_slots) in proof_targets {
            let storage_multiproof =
                account_multiproof.storages.remove(&hashed_address).unwrap_or_default();

            // Gather and record account trie nodes.
            let account = state
                .accounts
                .get(&hashed_address)
                .ok_or(TrieWitnessError::MissingAccount(hashed_address))?;
            let value = if account.is_some() || storage_multiproof.root != EMPTY_ROOT_HASH {
                account_rlp.clear();
                TrieAccount::from((account.unwrap_or_default(), storage_multiproof.root))
                    .encode(&mut account_rlp as &mut dyn BufMut);
                Some(account_rlp.clone())
            } else {
                None
            };
            let key = Nibbles::unpack(hashed_address);
            let proof = account_multiproof.account_subtree.iter().filter(|e| key.starts_with(e.0));
            account_trie_nodes.extend(self.target_nodes(key.clone(), value, proof)?);

            // Gather and record storage trie nodes for this account.
            let mut storage_trie_nodes = BTreeMap::default();
            let storage = state.storages.get(&hashed_address);
            for hashed_slot in hashed_slots {
                let slot_key = Nibbles::unpack(hashed_slot);
                let slot_value = storage
                    .and_then(|s| s.storage.get(&hashed_slot))
                    .filter(|v| !v.is_zero())
                    .map(|v| alloy_rlp::encode_fixed_size(v).to_vec());
                let proof = storage_multiproof.subtree.iter().filter(|e| slot_key.starts_with(e.0));
                storage_trie_nodes.extend(self.target_nodes(
                    slot_key.clone(),
                    slot_value,
                    proof,
                )?);
            }

            Self::next_root_from_proofs(storage_trie_nodes, |key: Nibbles| {
                // Right pad the target with 0s.
                let mut padded_key = key.pack();
                padded_key.resize(32, 0);
                let target_key = B256::from_slice(&padded_key);
                let mut proof = Proof::new(
                    self.trie_cursor_factory.clone(),
                    self.hashed_cursor_factory.clone(),
                )
                .with_prefix_sets_mut(self.prefix_sets.clone())
                .with_target((hashed_address, HashSet::from([target_key])))
                .storage_multiproof(hashed_address)?;

                // The subtree only contains the proof for a single target.
                let node =
                    proof.subtree.remove(&key).ok_or(TrieWitnessError::MissingTargetNode(key))?;
                self.witness.insert(keccak256(node.as_ref()), node.clone()); // record in witness
                Ok(node)
            })?;
        }

        Self::next_root_from_proofs(account_trie_nodes, |key: Nibbles| {
            // Right pad the target with 0s.
            let mut padded_key = key.pack();
            padded_key.resize(32, 0);
            let mut proof =
                Proof::new(self.trie_cursor_factory.clone(), self.hashed_cursor_factory.clone())
                    .with_prefix_sets_mut(self.prefix_sets.clone())
                    .with_target((B256::from_slice(&padded_key), HashSet::default()))
                    .multiproof()?;

            // The subtree only contains the proof for a single target.
            let node = proof
                .account_subtree
                .remove(&key)
                .ok_or(TrieWitnessError::MissingTargetNode(key))?;
            self.witness.insert(keccak256(node.as_ref()), node.clone()); // record in witness
            Ok(node)
        })?;

        Ok(self.witness)
    }

    /// Decodes and unrolls all nodes from the proof. Returns only sibling nodes
    /// in the path of the target and the final leaf node with updated value.
    fn target_nodes<'b>(
        &mut self,
        key: Nibbles,
        value: Option<Vec<u8>>,
        proof: impl IntoIterator<Item = (&'b Nibbles, &'b Bytes)>,
    ) -> Result<BTreeMap<Nibbles, Either<B256, Vec<u8>>>, StateProofError> {
        let mut trie_nodes = BTreeMap::default();
        for (path, encoded) in proof {
            // Record the node in witness.
            self.witness.insert(keccak256(encoded.as_ref()), encoded.clone());

            let mut next_path = path.clone();
            match TrieNode::decode(&mut &encoded[..])? {
                TrieNode::Branch(branch) => {
                    next_path.push(key[path.len()]);
                    let children = branch_node_children(path.clone(), &branch);
                    for (child_path, node_hash) in children {
                        if !key.starts_with(&child_path) {
                            trie_nodes.insert(child_path, Either::Left(node_hash));
                        }
                    }
                }
                TrieNode::Extension(extension) => {
                    next_path.extend_from_slice(&extension.key);
                }
                TrieNode::Leaf(leaf) => {
                    next_path.extend_from_slice(&leaf.key);
                    if next_path != key {
                        trie_nodes.insert(next_path.clone(), Either::Right(leaf.value.clone()));
                    }
                }
            };
        }

        if let Some(value) = value {
            trie_nodes.insert(key, Either::Right(value));
        }

        Ok(trie_nodes)
    }

    fn next_root_from_proofs(
        trie_nodes: BTreeMap<Nibbles, Either<B256, Vec<u8>>>,
        mut trie_node_provider: impl FnMut(Nibbles) -> Result<Bytes, TrieWitnessError>,
    ) -> Result<B256, TrieWitnessError> {
        // Ignore branch child hashes in the path of leaves or lower child hashes.
        let mut keys = trie_nodes.keys().peekable();
        let mut ignored = HashSet::<Nibbles>::default();
        while let Some(key) = keys.next() {
            if keys.peek().map_or(false, |next| next.starts_with(key)) {
                ignored.insert(key.clone());
            }
        }

        let mut hash_builder = HashBuilder::default();
        let mut trie_nodes = trie_nodes.into_iter().filter(|e| !ignored.contains(&e.0)).peekable();
        while let Some((path, value)) = trie_nodes.next() {
            match value {
                Either::Left(branch_hash) => {
                    let parent_branch_path = path.slice(..path.len() - 1);
                    if hash_builder.key.starts_with(&parent_branch_path) ||
                        trie_nodes
                            .peek()
                            .map_or(false, |next| next.0.starts_with(&parent_branch_path))
                    {
                        hash_builder.add_branch(path, branch_hash, false);
                    } else {
                        // Parent is a branch node that needs to be turned into an extension node.
                        let mut path = path.clone();
                        loop {
                            let node = trie_node_provider(path.clone())?;
                            match TrieNode::decode(&mut &node[..])? {
                                TrieNode::Branch(branch) => {
                                    let children = branch_node_children(path, &branch);
                                    for (child_path, branch_hash) in children {
                                        hash_builder.add_branch(child_path, branch_hash, false);
                                    }
                                    break
                                }
                                TrieNode::Leaf(leaf) => {
                                    let mut child_path = path;
                                    child_path.extend_from_slice(&leaf.key);
                                    hash_builder.add_leaf(child_path, &leaf.value);
                                    break
                                }
                                TrieNode::Extension(ext) => {
                                    path.extend_from_slice(&ext.key);
                                }
                            }
                        }
                    }
                }
                Either::Right(leaf_value) => {
                    hash_builder.add_leaf(path, &leaf_value);
                }
            }
        }
        Ok(hash_builder.root())
    }
}

/// Returned branch node children with keys in order.
fn branch_node_children(prefix: Nibbles, node: &BranchNode) -> Vec<(Nibbles, B256)> {
    let mut children = Vec::with_capacity(node.state_mask.count_ones() as usize);
    let mut stack_ptr = node.as_ref().first_child_index();
    for index in CHILD_INDEX_RANGE {
        if node.state_mask.is_bit_set(index) {
            let mut child_path = prefix.clone();
            child_path.push(index);
            children.push((child_path, B256::from_slice(&node.stack[stack_ptr][1..])));
            stack_ptr += 1;
        }
    }
    children
}