reth_codecs/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
//! Compact codec.
//!
//! *Warning*: The `Compact` encoding format and its implementations are
//! designed for storing and retrieving data internally. They are not hardened
//! to safely read potentially malicious data.
//!
//! ## Feature Flags
//!
//! - `alloy`: [Compact] implementation for various alloy types.

#![doc(
    html_logo_url = "https://raw.githubusercontent.com/paradigmxyz/reth/main/assets/reth-docs.png",
    html_favicon_url = "https://avatars0.githubusercontent.com/u/97369466?s=256",
    issue_tracker_base_url = "https://github.com/paradigmxyz/reth/issues/"
)]
#![cfg_attr(not(test), warn(unused_crate_dependencies))]
#![cfg_attr(docsrs, feature(doc_cfg, doc_auto_cfg))]
#![cfg_attr(not(feature = "std"), no_std)]

extern crate alloc;

pub use reth_codecs_derive::*;
use serde as _;

use alloy_primitives::{Address, Bloom, Bytes, FixedBytes, U256};
use bytes::{Buf, BufMut};

use alloc::{
    borrow::{Cow, ToOwned},
    vec::Vec,
};

#[cfg(feature = "test-utils")]
pub mod alloy;

#[cfg(not(feature = "test-utils"))]
#[cfg(any(test, feature = "alloy"))]
mod alloy;

pub mod txtype;

#[cfg(any(test, feature = "test-utils"))]
pub mod test_utils;

// Used by generated code and doc tests. Not public API.
#[doc(hidden)]
#[path = "private.rs"]
pub mod __private;

/// Trait that implements the `Compact` codec.
///
/// When deriving the trait for custom structs, be aware of certain limitations/recommendations:
/// * Works best with structs that only have native types (eg. u64, B256, U256).
/// * Fixed array types (B256, Address, Bloom) are not compacted.
/// * Max size of `T` in `Option<T>` or `Vec<T>` shouldn't exceed `0xffff`.
/// * Any `Bytes` field **should be placed last**.
/// * Any other type which is not known to the derive module **should be placed last** in they
///   contain a `Bytes` field.
///
/// The last two points make it easier to decode the data without saving the length on the
/// `StructFlags`. It will fail compilation if it's not respected. If they're alias to known types,
/// add their definitions to `get_bit_size()` or `known_types` in `generator.rs`.
///
/// Regarding the `specialized_to/from_compact` methods: Mainly used as a workaround for not being
/// able to specialize an impl over certain types like `Vec<T>`/`Option<T>` where `T` is a fixed
/// size array like `Vec<B256>`.
///
/// ## Caution
///
/// Due to the bitfields, every type change on the rust type (e.g. `U256` to `u64`) is a breaking
/// change and will lead to a new, incompatible [`Compact`] implementation. Implementers must take
/// special care when changing or rearranging fields.
pub trait Compact: Sized {
    /// Takes a buffer which can be written to. *Ideally*, it returns the length written to.
    fn to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>;

    /// Takes a buffer which can be read from. Returns the object and `buf` with its internal cursor
    /// advanced (eg.`.advance(len)`).
    ///
    /// `len` can either be the `buf` remaining length, or the length of the compacted type.
    ///
    /// It will panic, if `len` is smaller than `buf.len()`.
    fn from_compact(buf: &[u8], len: usize) -> (Self, &[u8]);

    /// "Optional": If there's no good reason to use it, don't.
    #[inline]
    fn specialized_to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        self.to_compact(buf)
    }

    /// "Optional": If there's no good reason to use it, don't.
    #[inline]
    fn specialized_from_compact(buf: &[u8], len: usize) -> (Self, &[u8]) {
        Self::from_compact(buf, len)
    }
}

impl Compact for alloc::string::String {
    fn to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        self.as_bytes().to_compact(buf)
    }

    fn from_compact(buf: &[u8], len: usize) -> (Self, &[u8]) {
        let (vec, buf) = Vec::<u8>::from_compact(buf, len);
        let string = Self::from_utf8(vec).unwrap(); // Safe conversion
        (string, buf)
    }
}

impl<T: Compact> Compact for &T {
    fn to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: BufMut + AsMut<[u8]>,
    {
        (*self).to_compact(buf)
    }

    fn from_compact(_: &[u8], _: usize) -> (Self, &[u8]) {
        unimplemented!()
    }
}

/// To be used with `Option<CompactPlaceholder>` to place or replace one bit on the bitflag struct.
pub type CompactPlaceholder = ();

impl Compact for CompactPlaceholder {
    #[inline]
    fn to_compact<B>(&self, _: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        0
    }

    #[inline]
    fn from_compact(buf: &[u8], _: usize) -> (Self, &[u8]) {
        ((), buf)
    }
}

macro_rules! impl_uint_compact {
    ($($name:tt),+) => {
        $(
            impl Compact for $name {
                #[inline]
                fn to_compact<B>(&self, buf: &mut B) -> usize
                    where B: bytes::BufMut + AsMut<[u8]>
                {
                    let leading = self.leading_zeros() as usize / 8;
                    buf.put_slice(&self.to_be_bytes()[leading..]);
                    core::mem::size_of::<$name>() - leading
                }

                #[inline]
                fn from_compact(mut buf: &[u8], len: usize) -> (Self, &[u8]) {
                    if len == 0 {
                        return (0, buf);
                    }

                    let mut arr = [0; core::mem::size_of::<$name>()];
                    arr[core::mem::size_of::<$name>() - len..].copy_from_slice(&buf[..len]);
                    buf.advance(len);
                    ($name::from_be_bytes(arr), buf)
                }
            }
        )+
    };
}

impl_uint_compact!(u8, u64, u128);

impl<T> Compact for Vec<T>
where
    T: Compact,
{
    /// Returns 0 since we won't include it in the `StructFlags`.
    #[inline]
    fn to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        self.as_slice().to_compact(buf)
    }

    #[inline]
    fn from_compact(buf: &[u8], _: usize) -> (Self, &[u8]) {
        let (length, mut buf) = decode_varuint(buf);
        let mut list = Self::with_capacity(length);
        for _ in 0..length {
            let len;
            (len, buf) = decode_varuint(buf);

            let (element, _) = T::from_compact(&buf[..len], len);
            buf.advance(len);

            list.push(element);
        }

        (list, buf)
    }

    /// To be used by fixed sized types like `Vec<B256>`.
    #[inline]
    fn specialized_to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        self.as_slice().specialized_to_compact(buf)
    }

    /// To be used by fixed sized types like `Vec<B256>`.
    #[inline]
    fn specialized_from_compact(buf: &[u8], len: usize) -> (Self, &[u8]) {
        let (length, mut buf) = decode_varuint(buf);
        let mut list = Self::with_capacity(length);

        for _ in 0..length {
            let element;
            (element, buf) = T::from_compact(buf, len);
            list.push(element);
        }

        (list, buf)
    }
}

impl<T> Compact for &[T]
where
    T: Compact,
{
    /// Returns 0 since we won't include it in the `StructFlags`.
    #[inline]
    fn to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        encode_varuint(self.len(), buf);

        let mut tmp: Vec<u8> = Vec::with_capacity(64);

        for element in *self {
            tmp.clear();

            // We don't know the length until we compact it
            let length = element.to_compact(&mut tmp);
            encode_varuint(length, buf);

            buf.put_slice(&tmp);
        }

        0
    }

    #[inline]
    fn from_compact(_: &[u8], _: usize) -> (Self, &[u8]) {
        unimplemented!()
    }

    /// To be used by fixed sized types like `&[B256]`.
    #[inline]
    fn specialized_to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        encode_varuint(self.len(), buf);
        for element in *self {
            element.to_compact(buf);
        }
        0
    }

    #[inline]
    fn specialized_from_compact(_: &[u8], _: usize) -> (Self, &[u8]) {
        unimplemented!()
    }
}

impl<T> Compact for Option<T>
where
    T: Compact,
{
    /// Returns 0 for `None` and 1 for `Some(_)`.
    #[inline]
    fn to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        let Some(element) = self else { return 0 };

        // We don't know the length of the element until we compact it.
        let mut tmp = Vec::with_capacity(64);
        let length = element.to_compact(&mut tmp);

        encode_varuint(length, buf);

        buf.put_slice(&tmp);

        1
    }

    #[inline]
    fn from_compact(buf: &[u8], len: usize) -> (Self, &[u8]) {
        if len == 0 {
            return (None, buf)
        }

        let (len, mut buf) = decode_varuint(buf);

        let (element, _) = T::from_compact(&buf[..len], len);
        buf.advance(len);

        (Some(element), buf)
    }

    /// To be used by fixed sized types like `Option<B256>`.
    #[inline]
    fn specialized_to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        if let Some(element) = self {
            element.to_compact(buf);
            1
        } else {
            0
        }
    }

    /// To be used by fixed sized types like `Option<B256>`.
    #[inline]
    fn specialized_from_compact(buf: &[u8], len: usize) -> (Self, &[u8]) {
        if len == 0 {
            return (None, buf)
        }

        let (element, buf) = T::from_compact(buf, len);
        (Some(element), buf)
    }
}

impl<T: Compact + ToOwned<Owned = T>> Compact for Cow<'_, T> {
    fn to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        self.as_ref().to_compact(buf)
    }

    fn from_compact(buf: &[u8], len: usize) -> (Self, &[u8]) {
        let (element, buf) = T::from_compact(buf, len);
        (Cow::Owned(element), buf)
    }

    fn specialized_to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        self.as_ref().specialized_to_compact(buf)
    }

    fn specialized_from_compact(buf: &[u8], len: usize) -> (Self, &[u8]) {
        let (element, buf) = T::specialized_from_compact(buf, len);
        (Cow::Owned(element), buf)
    }
}

impl Compact for U256 {
    #[inline]
    fn to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        let inner = self.to_be_bytes::<32>();
        let size = 32 - (self.leading_zeros() / 8);
        buf.put_slice(&inner[32 - size..]);
        size
    }

    #[inline]
    fn from_compact(mut buf: &[u8], len: usize) -> (Self, &[u8]) {
        if len == 0 {
            return (Self::ZERO, buf)
        }

        let mut arr = [0; 32];
        arr[(32 - len)..].copy_from_slice(&buf[..len]);
        buf.advance(len);
        (Self::from_be_bytes(arr), buf)
    }
}

impl Compact for Bytes {
    #[inline]
    fn to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        let len = self.len();
        buf.put_slice(&self.0);
        len
    }

    #[inline]
    fn from_compact(mut buf: &[u8], len: usize) -> (Self, &[u8]) {
        (buf.copy_to_bytes(len).into(), buf)
    }
}

impl<const N: usize> Compact for [u8; N] {
    #[inline]
    fn to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        buf.put_slice(&self[..]);
        N
    }

    #[inline]
    fn from_compact(mut buf: &[u8], len: usize) -> (Self, &[u8]) {
        if len == 0 {
            return ([0; N], buf)
        }

        let v = buf[..N].try_into().unwrap();
        buf.advance(N);
        (v, buf)
    }
}

/// Implements the [`Compact`] trait for wrappers over fixed size byte array types.
#[macro_export]
macro_rules! impl_compact_for_wrapped_bytes {
    ($($name:tt),+) => {
        $(
            impl Compact for $name {
                #[inline]
                fn to_compact<B>(&self, buf: &mut B) -> usize
                where
                    B: bytes::BufMut + AsMut<[u8]>
                {
                    self.0.to_compact(buf)
                }

                #[inline]
                fn from_compact(buf: &[u8], len: usize) -> (Self, &[u8]) {
                    let (v, buf) = <[u8; core::mem::size_of::<$name>()]>::from_compact(buf, len);
                    (Self::from(v), buf)
                }
            }
        )+
    };
}
impl_compact_for_wrapped_bytes!(Address, Bloom);

impl<const N: usize> Compact for FixedBytes<N> {
    #[inline]
    fn to_compact<B>(&self, buf: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        self.0.to_compact(buf)
    }

    #[inline]
    fn from_compact(buf: &[u8], len: usize) -> (Self, &[u8]) {
        let (v, buf) = <[u8; N]>::from_compact(buf, len);
        (Self::from(v), buf)
    }
}

impl Compact for bool {
    /// `bool` vars go directly to the `StructFlags` and are not written to the buffer.
    #[inline]
    fn to_compact<B>(&self, _: &mut B) -> usize
    where
        B: bytes::BufMut + AsMut<[u8]>,
    {
        *self as usize
    }

    /// `bool` expects the real value to come in `len`, and does not advance the cursor.
    #[inline]
    fn from_compact(buf: &[u8], len: usize) -> (Self, &[u8]) {
        (len != 0, buf)
    }
}

fn encode_varuint<B>(mut n: usize, buf: &mut B)
where
    B: bytes::BufMut + AsMut<[u8]>,
{
    while n >= 0x80 {
        buf.put_u8((n as u8) | 0x80);
        n >>= 7;
    }
    buf.put_u8(n as u8);
}

fn decode_varuint(buf: &[u8]) -> (usize, &[u8]) {
    let mut value = 0;

    for i in 0..33 {
        let byte = buf[i];
        value |= usize::from(byte & 0x7F) << (i * 7);
        if byte < 0x80 {
            return (value, &buf[i + 1..])
        }
    }

    decode_varuint_panic();
}

#[inline(never)]
#[cold]
const fn decode_varuint_panic() -> ! {
    panic!("could not decode varuint");
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloy_primitives::B256;
    use serde::{Deserialize, Serialize};

    #[test]
    fn compact_bytes() {
        let arr = [1, 2, 3, 4, 5];
        let list = Bytes::copy_from_slice(&arr);
        let mut buf = Vec::with_capacity(list.len() + 1);
        assert_eq!(list.to_compact(&mut buf), list.len());

        // Add some noise data.
        buf.push(1);

        assert_eq!(&buf[..arr.len()], &arr);
        assert_eq!(Bytes::from_compact(&buf, list.len()), (list, vec![1].as_slice()));
    }

    #[test]
    fn compact_address() {
        let mut buf = Vec::with_capacity(21);
        assert_eq!(Address::ZERO.to_compact(&mut buf), 20);
        assert_eq!(buf, vec![0; 20]);

        // Add some noise data.
        buf.push(1);

        // Address shouldn't care about the len passed, since it's not actually compacted.
        assert_eq!(Address::from_compact(&buf, 1000), (Address::ZERO, vec![1u8].as_slice()));
    }

    #[test]
    fn compact_b256() {
        let mut buf = Vec::with_capacity(32 + 1);
        assert_eq!(B256::ZERO.to_compact(&mut buf), 32);
        assert_eq!(buf, vec![0; 32]);

        // Add some noise data.
        buf.push(1);

        // B256 shouldn't care about the len passed, since it's not actually compacted.
        assert_eq!(B256::from_compact(&buf, 1000), (B256::ZERO, vec![1u8].as_slice()));
    }

    #[test]
    fn compact_bool() {
        let _vtrue = true;
        let mut buf = vec![];

        assert_eq!(true.to_compact(&mut buf), 1);
        // Bool vars go directly to the `StructFlags` and not written to the buf.
        assert_eq!(buf.len(), 0);

        assert_eq!(false.to_compact(&mut buf), 0);
        assert_eq!(buf.len(), 0);

        let buf = vec![100u8];

        // Bool expects the real value to come in `len`, and does not advance the cursor.
        assert_eq!(bool::from_compact(&buf, 1), (true, buf.as_slice()));
        assert_eq!(bool::from_compact(&buf, 0), (false, buf.as_slice()));
    }

    #[test]
    fn compact_option() {
        let opt = Some(B256::ZERO);
        let mut buf = Vec::with_capacity(1 + 32);

        assert_eq!(None::<B256>.to_compact(&mut buf), 0);
        assert_eq!(opt.to_compact(&mut buf), 1);
        assert_eq!(buf.len(), 1 + 32);

        assert_eq!(Option::<B256>::from_compact(&buf, 1), (opt, vec![].as_slice()));

        // If `None`, it returns the slice at the same cursor position.
        assert_eq!(Option::<B256>::from_compact(&buf, 0), (None, buf.as_slice()));

        let mut buf = Vec::with_capacity(32);
        assert_eq!(opt.specialized_to_compact(&mut buf), 1);
        assert_eq!(buf.len(), 32);
        assert_eq!(Option::<B256>::specialized_from_compact(&buf, 1), (opt, vec![].as_slice()));
    }

    #[test]
    fn compact_vec() {
        let list = vec![B256::ZERO, B256::ZERO];
        let mut buf = vec![];

        // Vec doesn't return a total length
        assert_eq!(list.to_compact(&mut buf), 0);

        // Add some noise data in the end that should be returned by `from_compact`.
        buf.extend([1u8, 2]);

        let mut remaining_buf = buf.as_slice();
        remaining_buf.advance(1 + 1 + 32 + 1 + 32);

        assert_eq!(Vec::<B256>::from_compact(&buf, 0), (list, remaining_buf));
        assert_eq!(remaining_buf, &[1u8, 2]);
    }

    #[test]
    fn compact_u256() {
        let mut buf = vec![];

        assert_eq!(U256::ZERO.to_compact(&mut buf), 0);
        assert!(buf.is_empty());
        assert_eq!(U256::from_compact(&buf, 0), (U256::ZERO, vec![].as_slice()));

        assert_eq!(U256::from(2).to_compact(&mut buf), 1);
        assert_eq!(buf, vec![2u8]);
        assert_eq!(U256::from_compact(&buf, 1), (U256::from(2), vec![].as_slice()));
    }

    #[test]
    fn compact_u64() {
        let mut buf = vec![];

        assert_eq!(0u64.to_compact(&mut buf), 0);
        assert!(buf.is_empty());
        assert_eq!(u64::from_compact(&buf, 0), (0u64, vec![].as_slice()));

        assert_eq!(2u64.to_compact(&mut buf), 1);
        assert_eq!(buf, vec![2u8]);
        assert_eq!(u64::from_compact(&buf, 1), (2u64, vec![].as_slice()));

        let mut buf = Vec::with_capacity(8);

        assert_eq!(0xffffffffffffffffu64.to_compact(&mut buf), 8);
        assert_eq!(&buf, &[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff]);
        assert_eq!(u64::from_compact(&buf, 8), (0xffffffffffffffffu64, vec![].as_slice()));
    }

    #[test]
    fn variable_uint() {
        proptest::proptest!(|(val: usize)| {
            let mut buf = vec![];
            encode_varuint(val, &mut buf);
            let (decoded, read_buf) = decode_varuint(&buf);
            assert_eq!(val, decoded);
            assert!(!read_buf.has_remaining());
        });
    }

    #[test]
    fn compact_slice() {
        let vec_list = vec![B256::ZERO, B256::random(), B256::random(), B256::ZERO];

        // to_compact
        {
            let mut vec_buf = vec![];
            assert_eq!(vec_list.to_compact(&mut vec_buf), 0);

            let mut slice_buf = vec![];
            assert_eq!(vec_list.as_slice().to_compact(&mut slice_buf), 0);

            assert_eq!(vec_buf, slice_buf);
        }

        // specialized_to_compact
        {
            let mut vec_buf = vec![];
            assert_eq!(vec_list.specialized_to_compact(&mut vec_buf), 0);

            let mut slice_buf = vec![];
            assert_eq!(vec_list.as_slice().specialized_to_compact(&mut slice_buf), 0);

            assert_eq!(vec_buf, slice_buf);
        }
    }

    #[derive(Debug, PartialEq, Clone, Serialize, Deserialize, Compact, arbitrary::Arbitrary)]
    #[add_arbitrary_tests(crate, compact)]
    #[reth_codecs(crate = "crate")]
    struct TestStruct {
        f_u64: u64,
        f_u256: U256,
        f_bool_t: bool,
        f_bool_f: bool,
        f_option_none: Option<B256>,
        f_option_some: Option<B256>,
        f_option_some_u64: Option<u64>,
        f_vec_empty: Vec<Address>,
        f_vec_some: Vec<Address>,
    }

    impl Default for TestStruct {
        fn default() -> Self {
            Self {
                f_u64: 1u64,                                    // 4 bits | 1 byte
                f_u256: U256::from(1u64),                       // 6 bits | 1 byte
                f_bool_f: false,                                // 1 bit  | 0 bytes
                f_bool_t: true,                                 // 1 bit  | 0 bytes
                f_option_none: None,                            // 1 bit  | 0 bytes
                f_option_some: Some(B256::ZERO),                // 1 bit  | 32 bytes
                f_option_some_u64: Some(0xffffu64),             // 1 bit  | 1 + 2 bytes
                f_vec_empty: vec![],                            // 0 bits | 1 bytes
                f_vec_some: vec![Address::ZERO, Address::ZERO], // 0 bits | 1 + 20*2 bytes
            }
        }
    }

    #[test]
    fn compact_test_struct() {
        let test = TestStruct::default();
        const EXPECTED_SIZE: usize = 2 + // TestStructFlags
            1 +
            1 +
            // 0 + 0 + 0 +
            32 +
            1 + 2 +
            1 +
            1 + 20 * 2;
        let mut buf = Vec::with_capacity(EXPECTED_SIZE);
        assert_eq!(test.to_compact(&mut buf), EXPECTED_SIZE);

        assert_eq!(
            TestStruct::from_compact(&buf, buf.len()),
            (TestStruct::default(), vec![].as_slice())
        );
    }

    #[derive(
        Debug, PartialEq, Clone, Default, Serialize, Deserialize, Compact, arbitrary::Arbitrary,
    )]
    #[add_arbitrary_tests(crate, compact)]
    #[reth_codecs(crate = "crate")]
    enum TestEnum {
        #[default]
        Var0,
        Var1(TestStruct),
        Var2(u64),
    }

    #[cfg(test)]
    #[allow(dead_code)]
    #[test_fuzz::test_fuzz]
    fn compact_test_enum_all_variants(var0: TestEnum, var1: TestEnum, var2: TestEnum) {
        let mut buf = vec![];
        var0.to_compact(&mut buf);
        assert_eq!(TestEnum::from_compact(&buf, buf.len()).0, var0);

        let mut buf = vec![];
        var1.to_compact(&mut buf);
        assert_eq!(TestEnum::from_compact(&buf, buf.len()).0, var1);

        let mut buf = vec![];
        var2.to_compact(&mut buf);
        assert_eq!(TestEnum::from_compact(&buf, buf.len()).0, var2);
    }

    #[test]
    fn compact_test_enum() {
        let var0 = TestEnum::Var0;
        let var1 = TestEnum::Var1(TestStruct::default());
        let var2 = TestEnum::Var2(1u64);

        compact_test_enum_all_variants(var0, var1, var2);
    }
}