reth::beacon_consensus

Struct BeaconConsensusEngine

Source
pub struct BeaconConsensusEngine<N, BT, Client>{ /* private fields */ }
Expand description

The beacon consensus engine is the driver that switches between historical and live sync.

The beacon consensus engine is itself driven by messages from the Consensus Layer, which are received by Engine API (JSON-RPC).

The consensus engine is idle until it receives the first BeaconEngineMessage::ForkchoiceUpdated message from the CL which would initiate the sync. At first, the consensus engine would run the [Pipeline] until the latest known block hash. Afterward, it would attempt to create/restore the BlockchainTreeEngine from the blocks that are currently available. In case the restoration is successful, the consensus engine would run in a live sync mode, populating the BlockchainTreeEngine with new blocks as they arrive via engine API and downloading any missing blocks from the network to fill potential gaps.

The consensus engine has two data input sources:

§New Payload (engine_newPayloadV{})

The engine receives new payloads from the CL. If the payload is connected to the canonical chain, it will be fully validated added to a chain in the BlockchainTreeEngine: VALID

If the payload’s chain is disconnected (at least 1 block is missing) then it will be buffered: SYNCING (BlockStatus::Disconnected).

§Forkchoice Update (FCU) (engine_forkchoiceUpdatedV{})

This contains the latest forkchoice state and the payload attributes. The engine will attempt to make a new canonical chain based on the head_hash of the update and trigger payload building if the payload_attrs are present and the FCU is VALID.

The head_hash forms a chain by walking backwards from the head_hash towards the canonical blocks of the chain.

Making a new canonical chain can result in the following relevant outcomes:

§The chain is connected

All blocks of the head_hash’s chain are present in the BlockchainTreeEngine and are committed to the canonical chain. This also includes reorgs.

§The chain is disconnected

In this case the BlockchainTreeEngine doesn’t know how the new chain connects to the existing canonical chain. It could be a simple commit (new blocks extend the current head) or a re-org that requires unwinding the canonical chain.

This further distinguishes between two variants:

§head_hash’s block exists

The head_hash’s block was already received/downloaded, but at least one block is missing to form a connected chain. The engine will attempt to download the missing blocks from the network by walking backwards (parent_hash), and then try to make the block canonical as soon as the chain becomes connected.

However, it still can be the case that the chain and the FCU is INVALID.

§head_hash block is missing

This is similar to the previous case, but the head_hash’s block is missing. At which point the engine doesn’t know where the new head will point to: new chain could be a re-org or a simple commit. The engine will download the missing head first and then proceed as in the previous case.

§Panics

If the future is polled more than once. Leads to undefined state.

Implementations§

Source§

impl<N, BT, Client> BeaconConsensusEngine<N, BT, Client>

Source

pub fn new( client: Client, pipeline: Pipeline<N>, blockchain: BT, task_spawner: Box<dyn TaskSpawner>, sync_state_updater: Box<dyn NetworkSyncUpdater>, max_block: Option<u64>, payload_builder: PayloadBuilderHandle<<N as NodeTypesWithEngine>::Engine>, target: Option<FixedBytes<32>>, pipeline_run_threshold: u64, hooks: EngineHooks, ) -> Result<(BeaconConsensusEngine<N, BT, Client>, BeaconConsensusEngineHandle<<N as NodeTypesWithEngine>::Engine>), RethError>

Create a new instance of the BeaconConsensusEngine.

Source

pub fn with_channel( client: Client, pipeline: Pipeline<N>, blockchain: BT, task_spawner: Box<dyn TaskSpawner>, sync_state_updater: Box<dyn NetworkSyncUpdater>, max_block: Option<u64>, payload_builder: PayloadBuilderHandle<<N as NodeTypesWithEngine>::Engine>, target: Option<FixedBytes<32>>, pipeline_run_threshold: u64, to_engine: UnboundedSender<BeaconEngineMessage<<N as NodeTypesWithEngine>::Engine>>, engine_message_stream: Pin<Box<dyn Stream<Item = BeaconEngineMessage<<N as NodeTypesWithEngine>::Engine>> + Send>>, hooks: EngineHooks, ) -> Result<(BeaconConsensusEngine<N, BT, Client>, BeaconConsensusEngineHandle<<N as NodeTypesWithEngine>::Engine>), RethError>

Create a new instance of the BeaconConsensusEngine using the given channel to configure the BeaconEngineMessage communication channel.

By default the engine is started with idle pipeline. The pipeline can be launched immediately in one of the following ways descending in priority:

  • Explicit Option::Some target block hash provided via a constructor argument.
  • The process was previously interrupted amidst the pipeline run. This is checked by comparing the checkpoints of the first ([StageId::Headers]) and last ([StageId::Finish]) stages. In this case, the latest available header in the database is used as the target.

Propagates any database related error.

Source

pub fn handle( &self, ) -> BeaconConsensusEngineHandle<<N as NodeTypesWithEngine>::Engine>

Returns a new BeaconConsensusEngineHandle that can be cloned and shared.

The BeaconConsensusEngineHandle can be used to interact with this BeaconConsensusEngine

Trait Implementations§

Source§

impl<N, BT, Client> Future for BeaconConsensusEngine<N, BT, Client>

On initialization, the consensus engine will poll the message receiver and return Poll::Pending until the first forkchoice update message is received.

As soon as the consensus engine receives the first forkchoice updated message and updates the local forkchoice state, it will launch the pipeline to sync to the head hash. While the pipeline is syncing, the consensus engine will keep processing messages from the receiver and forwarding them to the blockchain tree.

Source§

type Output = Result<(), BeaconConsensusEngineError>

The type of value produced on completion.
Source§

fn poll( self: Pin<&mut BeaconConsensusEngine<N, BT, Client>>, cx: &mut Context<'_>, ) -> Poll<<BeaconConsensusEngine<N, BT, Client> as Future>::Output>

Attempts to resolve the future to a final value, registering the current task for wakeup if the value is not yet available. Read more

Auto Trait Implementations§

§

impl<N, BT, Client> !Freeze for BeaconConsensusEngine<N, BT, Client>

§

impl<N, BT, Client> !RefUnwindSafe for BeaconConsensusEngine<N, BT, Client>

§

impl<N, BT, Client> Send for BeaconConsensusEngine<N, BT, Client>
where <N as NodeTypes>::ChainSpec: Sized,

§

impl<N, BT, Client> !Sync for BeaconConsensusEngine<N, BT, Client>

§

impl<N, BT, Client> Unpin for BeaconConsensusEngine<N, BT, Client>
where <N as NodeTypes>::ChainSpec: Sized, BT: Unpin,

§

impl<N, BT, Client> !UnwindSafe for BeaconConsensusEngine<N, BT, Client>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Conv for T

§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
§

impl<T> FmtForward for T

§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<F> FutureExt for F
where F: Future,

§

fn block_on(self) -> Self::Output
where Self: Sized,

Block the thread until the future is ready. Read more
§

impl<T> FutureExt for T
where T: Future + ?Sized,

§

fn map<U, F>(self, f: F) -> Map<Self, F>
where F: FnOnce(Self::Output) -> U, Self: Sized,

Map this future’s output to a different type, returning a new future of the resulting type. Read more
§

fn map_into<U>(self) -> MapInto<Self, U>
where Self::Output: Into<U>, Self: Sized,

Map this future’s output to a different type, returning a new future of the resulting type. Read more
§

fn then<Fut, F>(self, f: F) -> Then<Self, Fut, F>
where F: FnOnce(Self::Output) -> Fut, Fut: Future, Self: Sized,

Chain on a computation for when a future finished, passing the result of the future to the provided closure f. Read more
§

fn left_future<B>(self) -> Either<Self, B>
where B: Future<Output = Self::Output>, Self: Sized,

Wrap this future in an Either future, making it the left-hand variant of that Either. Read more
§

fn right_future<A>(self) -> Either<A, Self>
where A: Future<Output = Self::Output>, Self: Sized,

Wrap this future in an Either future, making it the right-hand variant of that Either. Read more
§

fn into_stream(self) -> IntoStream<Self>
where Self: Sized,

Convert this future into a single element stream. Read more
§

fn flatten(self) -> Flatten<Self>
where Self::Output: Future, Self: Sized,

Flatten the execution of this future when the output of this future is itself another future. Read more
§

fn flatten_stream(self) -> FlattenStream<Self>
where Self::Output: Stream, Self: Sized,

Flatten the execution of this future when the successful result of this future is a stream. Read more
§

fn fuse(self) -> Fuse<Self>
where Self: Sized,

Fuse a future such that poll will never again be called once it has completed. This method can be used to turn any Future into a FusedFuture. Read more
§

fn inspect<F>(self, f: F) -> Inspect<Self, F>
where F: FnOnce(&Self::Output), Self: Sized,

Do something with the output of a future before passing it on. Read more
§

fn catch_unwind(self) -> CatchUnwind<Self>
where Self: Sized + UnwindSafe,

Available on crate feature std only.
Catches unwinding panics while polling the future. Read more
§

fn shared(self) -> Shared<Self>
where Self: Sized, Self::Output: Clone,

Available on crate feature std only.
Create a cloneable handle to this future where all handles will resolve to the same result. Read more
§

fn remote_handle(self) -> (Remote<Self>, RemoteHandle<Self::Output>)
where Self: Sized,

Available on crate features channel and std only.
Turn this future into a future that yields () on completion and sends its output to another future on a separate task. Read more
§

fn boxed<'a>(self) -> Pin<Box<dyn Future<Output = Self::Output> + Send + 'a>>
where Self: Sized + Send + 'a,

Available on crate feature alloc only.
Wrap the future in a Box, pinning it. Read more
§

fn boxed_local<'a>(self) -> Pin<Box<dyn Future<Output = Self::Output> + 'a>>
where Self: Sized + 'a,

Available on crate feature alloc only.
Wrap the future in a Box, pinning it. Read more
§

fn unit_error(self) -> UnitError<Self>
where Self: Sized,

§

fn never_error(self) -> NeverError<Self>
where Self: Sized,

§

fn poll_unpin(&mut self, cx: &mut Context<'_>) -> Poll<Self::Output>
where Self: Unpin,

A convenience for calling Future::poll on Unpin future types.
§

fn now_or_never(self) -> Option<Self::Output>
where Self: Sized,

Evaluates and consumes the future, returning the resulting output if the future is ready after the first call to Future::poll. Read more
§

impl<T> FutureExt for T
where T: Future + ?Sized,

§

fn timeout(self, timeout: Duration) -> Timeout<Self>
where Self: Sized,

A wrapper around [tokio::time::timeout], with the advantage that it is easier to write fluent call chains. Read more
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<F> IntoFuture for F
where F: Future,

Source§

type Output = <F as Future>::Output

The output that the future will produce on completion.
Source§

type IntoFuture = F

Which kind of future are we turning this into?
Source§

fn into_future(self) -> <F as IntoFuture>::IntoFuture

Creates a future from a value. Read more
§

impl<T> Paint for T
where T: ?Sized,

§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Primary].

§Example
println!("{}", value.primary());
§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color::Fixed].

§Example
println!("{}", value.fixed(color));
§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color::Rgb].

§Example
println!("{}", value.rgb(r, g, b));
§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Black].

§Example
println!("{}", value.black());
§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Red].

§Example
println!("{}", value.red());
§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Green].

§Example
println!("{}", value.green());
§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Yellow].

§Example
println!("{}", value.yellow());
§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Blue].

§Example
println!("{}", value.blue());
§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Magenta].

§Example
println!("{}", value.magenta());
§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Cyan].

§Example
println!("{}", value.cyan());
§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color::White].

§Example
println!("{}", value.white());
§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightBlack].

§Example
println!("{}", value.bright_black());
§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightRed].

§Example
println!("{}", value.bright_red());
§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightGreen].

§Example
println!("{}", value.bright_green());
§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightYellow].

§Example
println!("{}", value.bright_yellow());
§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightBlue].

§Example
println!("{}", value.bright_blue());
§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightMagenta].

§Example
println!("{}", value.bright_magenta());
§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightCyan].

§Example
println!("{}", value.bright_cyan());
§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightWhite].

§Example
println!("{}", value.bright_white());
§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Primary].

§Example
println!("{}", value.on_primary());
§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color::Fixed].

§Example
println!("{}", value.on_fixed(color));
§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color::Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Black].

§Example
println!("{}", value.on_black());
§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Red].

§Example
println!("{}", value.on_red());
§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Green].

§Example
println!("{}", value.on_green());
§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Yellow].

§Example
println!("{}", value.on_yellow());
§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Blue].

§Example
println!("{}", value.on_blue());
§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Magenta].

§Example
println!("{}", value.on_magenta());
§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Cyan].

§Example
println!("{}", value.on_cyan());
§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color::White].

§Example
println!("{}", value.on_white());
§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightBlack].

§Example
println!("{}", value.on_bright_black());
§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightRed].

§Example
println!("{}", value.on_bright_red());
§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightGreen].

§Example
println!("{}", value.on_bright_green());
§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightBlue].

§Example
println!("{}", value.on_bright_blue());
§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightWhite].

§Example
println!("{}", value.on_bright_white());
§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling [Attribute] value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Bold].

§Example
println!("{}", value.bold());
§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Dim].

§Example
println!("{}", value.dim());
§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Italic].

§Example
println!("{}", value.italic());
§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute::Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute::RapidBlink].

§Example
println!("{}", value.rapid_blink());
§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Invert].

§Example
println!("{}", value.invert());
§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Conceal].

§Example
println!("{}", value.conceal());
§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Strike].

§Example
println!("{}", value.strike());
§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi [Quirk] value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Mask].

§Example
println!("{}", value.mask());
§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Wrap].

§Example
println!("{}", value.wrap());
§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Linger].

§Example
println!("{}", value.linger());
§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk::Clear].

§Example
println!("{}", value.clear());
§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Resetting].

§Example
println!("{}", value.resetting());
§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Bright].

§Example
println!("{}", value.bright());
§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::OnBright].

§Example
println!("{}", value.on_bright());
§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the [Condition] value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new [Painted] with a default [Style]. Read more
§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
§

impl<T> Pipe for T
where T: ?Sized,

§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> PolicyExt for T
where T: ?Sized,

§

fn and<P, B, E>(self, other: P) -> And<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns [Action::Follow] only if self and other return Action::Follow. Read more
§

fn or<P, B, E>(self, other: P) -> Or<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns [Action::Follow] if either self or other returns Action::Follow. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<T> Tap for T

§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
§

impl<T> TryConv for T

§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
§

impl<F, T, E> TryFuture for F
where F: Future<Output = Result<T, E>> + ?Sized,

§

type Ok = T

The type of successful values yielded by this future
§

type Error = E

The type of failures yielded by this future
§

fn try_poll( self: Pin<&mut F>, cx: &mut Context<'_>, ) -> Poll<<F as Future>::Output>

Poll this TryFuture as if it were a Future. Read more
§

impl<Fut> TryFutureExt for Fut
where Fut: TryFuture + ?Sized,

§

fn flatten_sink<Item>(self) -> FlattenSink<Self, Self::Ok>
where Self::Ok: Sink<Item, Error = Self::Error>, Self: Sized,

Available on crate feature sink only.
Flattens the execution of this future when the successful result of this future is a [Sink]. Read more
§

fn map_ok<T, F>(self, f: F) -> MapOk<Self, F>
where F: FnOnce(Self::Ok) -> T, Self: Sized,

Maps this future’s success value to a different value. Read more
§

fn map_ok_or_else<T, E, F>(self, e: E, f: F) -> MapOkOrElse<Self, F, E>
where F: FnOnce(Self::Ok) -> T, E: FnOnce(Self::Error) -> T, Self: Sized,

Maps this future’s success value to a different value, and permits for error handling resulting in the same type. Read more
§

fn map_err<E, F>(self, f: F) -> MapErr<Self, F>
where F: FnOnce(Self::Error) -> E, Self: Sized,

Maps this future’s error value to a different value. Read more
§

fn err_into<E>(self) -> ErrInto<Self, E>
where Self: Sized, Self::Error: Into<E>,

Maps this future’s Error to a new error type using the Into trait. Read more
§

fn ok_into<U>(self) -> OkInto<Self, U>
where Self: Sized, Self::Ok: Into<U>,

Maps this future’s Ok to a new type using the Into trait.
§

fn and_then<Fut, F>(self, f: F) -> AndThen<Self, Fut, F>
where F: FnOnce(Self::Ok) -> Fut, Fut: TryFuture<Error = Self::Error>, Self: Sized,

Executes another future after this one resolves successfully. The success value is passed to a closure to create this subsequent future. Read more
§

fn or_else<Fut, F>(self, f: F) -> OrElse<Self, Fut, F>
where F: FnOnce(Self::Error) -> Fut, Fut: TryFuture<Ok = Self::Ok>, Self: Sized,

Executes another future if this one resolves to an error. The error value is passed to a closure to create this subsequent future. Read more
§

fn inspect_ok<F>(self, f: F) -> InspectOk<Self, F>
where F: FnOnce(&Self::Ok), Self: Sized,

Do something with the success value of a future before passing it on. Read more
§

fn inspect_err<F>(self, f: F) -> InspectErr<Self, F>
where F: FnOnce(&Self::Error), Self: Sized,

Do something with the error value of a future before passing it on. Read more
§

fn try_flatten(self) -> TryFlatten<Self, Self::Ok>
where Self::Ok: TryFuture<Error = Self::Error>, Self: Sized,

Flatten the execution of this future when the successful result of this future is another future. Read more
§

fn try_flatten_stream(self) -> TryFlattenStream<Self>
where Self::Ok: TryStream<Error = Self::Error>, Self: Sized,

Flatten the execution of this future when the successful result of this future is a stream. Read more
§

fn unwrap_or_else<F>(self, f: F) -> UnwrapOrElse<Self, F>
where Self: Sized, F: FnOnce(Self::Error) -> Self::Ok,

Unwraps this future’s output, producing a future with this future’s Ok type as its Output type. Read more
§

fn into_future(self) -> IntoFuture<Self>
where Self: Sized,

Wraps a [TryFuture] into a type that implements Future. Read more
§

fn try_poll_unpin( &mut self, cx: &mut Context<'_>, ) -> Poll<Result<Self::Ok, Self::Error>>
where Self: Unpin,

A convenience method for calling [TryFuture::try_poll] on Unpin future types.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<T> ErasedDestructor for T
where T: 'static,

§

impl<T> MaybeSend for T
where T: Send,

§

impl<T> MaybeSendSync for T

Layout§

Note: Unable to compute type layout, possibly due to this type having generic parameters. Layout can only be computed for concrete, fully-instantiated types.