Struct Journal

pub struct Journal<DB, ENTRY = JournalEntry>
where ENTRY: JournalEntryTr,
{ pub database: DB, pub state: HashMap<Address, Account, RandomState>, pub transient_storage: HashMap<(Address, Uint<256, 4>), Uint<256, 4>, RandomState>, pub logs: Vec<Log>, pub depth: usize, pub journal: Vec<Vec<ENTRY>>, pub spec: SpecId, pub warm_preloaded_addresses: HashSet<Address, RandomState>, pub precompiles: HashSet<Address, RandomState>, }
Expand description

A journal of state changes internal to the EVM

On each additional call, the depth of the journaled state is increased (depth) and a new journal is added.

The journal contains every state change that happens within that call, making it possible to revert changes made in a specific call.

Fields§

§database: DB

Database

§state: HashMap<Address, Account, RandomState>

The current state

§transient_storage: HashMap<(Address, Uint<256, 4>), Uint<256, 4>, RandomState>

Transient storage that is discarded after every transaction.

See EIP-1153.

§logs: Vec<Log>

Emitted logs

§depth: usize

The current call stack depth

§journal: Vec<Vec<ENTRY>>

The journal of state changes, one for each call

§spec: SpecId

The spec ID for the EVM

This spec is used for two things:

  • EIP-161: Prior to this EIP, Ethereum had separate definitions for empty and non-existing accounts.
  • EIP-6780: SELFDESTRUCT only in same transaction
§warm_preloaded_addresses: HashSet<Address, RandomState>

Warm loaded addresses are used to check if loaded address should be considered cold or warm loaded when the account is first accessed.

Note that this not include newly loaded accounts, account and storage is considered warm if it is found in the State.

§precompiles: HashSet<Address, RandomState>

Precompile addresses

Implementations§

§

impl<DB> Journal<DB>

pub fn into_init(self) -> Journal<EmptyDBTyped<Infallible>>

Creates a new JournalInit by moving all internal state data (state, storage, logs, etc) into a new journal with an empty database. This consumes the original journal.

This is useful when you want to transfer the current state to a new execution context that doesn’t need access to the original database, like when snapshotting state or forking execution.

If you need to preserve the original journal, use Self::to_init instead which clones the state.

pub fn to_init(&self) -> Journal<EmptyDBTyped<Infallible>>

Creates a new JournalInit by cloning all internal state data (state, storage, logs, etc) but using an empty database. This allows creating a new journaled state with the same state data but without carrying over the original database.

This is useful when you want to reuse the current state for a new transaction or execution context, but want to start with a fresh database.

§

impl<DB, ENTRY> Journal<DB, ENTRY>
where DB: Database, ENTRY: JournalEntryTr,

pub fn new(spec: SpecId, database: DB) -> Journal<DB, ENTRY>

Creates new JournaledState.

warm_preloaded_addresses is used to determine if address is considered warm loaded. In ordinary case this is precompile or beneficiary.

§Note

This function will journal state after Spurious Dragon fork. And will not take into account if account is not existing or empty.

pub fn state(&mut self) -> &mut HashMap<Address, Account, RandomState>

Return reference to state.

pub fn set_spec_id(&mut self, spec: SpecId)

Sets SpecId.

pub fn touch(&mut self, address: &Address)

Mark account as touched as only touched accounts will be added to state. This is especially important for state clear where touched empty accounts needs to be removed from state.

pub fn account(&self, address: Address) -> &Account

Returns the loaded Account for the given address.

This assumes that the account has already been loaded.

§Panics

Panics if the account has not been loaded and is missing from the state set.

pub fn set_code_with_hash( &mut self, address: Address, code: Bytecode, hash: FixedBytes<32>, )

Set code and its hash to the account.

Note: Assume account is warm and that hash is calculated from code.

pub fn set_code(&mut self, address: Address, code: Bytecode)

Use it only if you know that acc is warm.

Assume account is warm.

pub fn inc_nonce(&mut self, address: Address) -> Option<u64>

pub fn transfer( &mut self, from: &Address, to: &Address, balance: Uint<256, 4>, ) -> Result<Option<TransferError>, <DB as Database>::Error>

Transfers balance from two accounts. Returns error if sender balance is not enough.

pub fn create_account_checkpoint( &mut self, caller: Address, target_address: Address, balance: Uint<256, 4>, spec_id: SpecId, ) -> Result<JournalCheckpoint, TransferError>

Creates account or returns false if collision is detected.

There are few steps done:

  1. Make created account warm loaded (AccessList) and this should be done before subroutine checkpoint is created.
  2. Check if there is collision of newly created account with existing one.
  3. Mark created account as created.
  4. Add fund to created account
  5. Increment nonce of created account if SpuriousDragon is active
  6. Decrease balance of caller account.
§Panics

Panics if the caller is not loaded inside the EVM state. This should have been done inside create_inner.

pub fn checkpoint(&mut self) -> JournalCheckpoint

Makes a checkpoint that in case of Revert can bring back state to this point.

pub fn checkpoint_commit(&mut self)

Commits the checkpoint.

pub fn checkpoint_revert(&mut self, checkpoint: JournalCheckpoint)

Reverts all changes to state until given checkpoint.

pub fn selfdestruct( &mut self, address: Address, target: Address, ) -> Result<StateLoad<SelfDestructResult>, <DB as Database>::Error>

Performs selfdestruct action. Transfers balance from address to target. Check if target exist/is_cold

Note: Balance will be lost if address and target are the same BUT when current spec enables Cancun, this happens only when the account associated to address is created in the same tx

§References:

pub fn initial_account_load( &mut self, address: Address, storage_keys: impl IntoIterator<Item = Uint<256, 4>>, ) -> Result<&mut Account, <DB as Database>::Error>

Initial load of account. This load will not be tracked inside journal

pub fn load_account( &mut self, address: Address, ) -> Result<StateLoad<&mut Account>, <DB as Database>::Error>

Loads account into memory. return if it is cold or warm accessed

pub fn load_account_delegated( &mut self, address: Address, ) -> Result<StateLoad<AccountLoad>, <DB as Database>::Error>

pub fn load_code( &mut self, address: Address, ) -> Result<StateLoad<&mut Account>, <DB as Database>::Error>

pub fn load_account_optional( &mut self, address: Address, load_code: bool, ) -> Result<StateLoad<&mut Account>, <DB as Database>::Error>

Loads code

pub fn sload( &mut self, address: Address, key: Uint<256, 4>, ) -> Result<StateLoad<Uint<256, 4>>, <DB as Database>::Error>

Loads storage slot.

§Panics

Panics if the account is not present in the state.

pub fn sstore( &mut self, address: Address, key: Uint<256, 4>, new: Uint<256, 4>, ) -> Result<StateLoad<SStoreResult>, <DB as Database>::Error>

Stores storage slot.

And returns (original,present,new) slot value.

Note: Account should already be present in our state.

pub fn tload(&mut self, address: Address, key: Uint<256, 4>) -> Uint<256, 4>

Read transient storage tied to the account.

EIP-1153: Transient storage opcodes

pub fn tstore(&mut self, address: Address, key: Uint<256, 4>, new: Uint<256, 4>)

Store transient storage tied to the account.

If values is different add entry to the journal so that old state can be reverted if that action is needed.

EIP-1153: Transient storage opcodes

pub fn log(&mut self, log: Log)

Pushes log into subroutine.

§

impl<DB> Journal<DB>

pub fn from_init( init: &Journal<EmptyDBTyped<Infallible>>, database: DB, ) -> Journal<DB>

Creates a new JournaledState by copying state data from a JournalInit and provided database. This allows reusing the state, logs, and other data from a previous execution context while connecting it to a different database backend.

Trait Implementations§

§

impl<DB, ENTRY> Clone for Journal<DB, ENTRY>
where DB: Clone, ENTRY: Clone + JournalEntryTr,

§

fn clone(&self) -> Journal<DB, ENTRY>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl<DB, ENTRY> Debug for Journal<DB, ENTRY>
where DB: Debug, ENTRY: Debug + JournalEntryTr,

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl<'de, DB, ENTRY> Deserialize<'de> for Journal<DB, ENTRY>
where ENTRY: JournalEntryTr + Deserialize<'de>, DB: Deserialize<'de>,

§

fn deserialize<__D>( __deserializer: __D, ) -> Result<Journal<DB, ENTRY>, <__D as Deserializer<'de>>::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
§

impl<DB> JournalExt for Journal<DB>
where DB: Database,

§

fn logs(&self) -> &[Log]

§

fn last_journal(&self) -> &[JournalEntry]

§

fn evm_state(&self) -> &HashMap<Address, Account, RandomState>

§

fn evm_state_mut(&mut self) -> &mut HashMap<Address, Account, RandomState>

§

impl<DB, ENTRY> JournalTr for Journal<DB, ENTRY>
where DB: Database, ENTRY: JournalEntryTr,

§

fn depth(&self) -> usize

Returns call depth.

§

type Database = DB

§

type FinalOutput = JournalOutput

§

fn new(database: DB) -> Journal<DB, ENTRY>

Creates new Journaled state. Read more
§

fn db_ref(&self) -> &<Journal<DB, ENTRY> as JournalTr>::Database

Returns the database.
§

fn db(&mut self) -> &mut <Journal<DB, ENTRY> as JournalTr>::Database

Returns the mutable database.
§

fn sload( &mut self, address: Address, key: Uint<256, 4>, ) -> Result<StateLoad<Uint<256, 4>>, <<Journal<DB, ENTRY> as JournalTr>::Database as Database>::Error>

Returns the storage value from Journal state. Read more
§

fn sstore( &mut self, address: Address, key: Uint<256, 4>, value: Uint<256, 4>, ) -> Result<StateLoad<SStoreResult>, <<Journal<DB, ENTRY> as JournalTr>::Database as Database>::Error>

Stores the storage value in Journal state.
§

fn tload(&mut self, address: Address, key: Uint<256, 4>) -> Uint<256, 4>

Loads transient storage value.
§

fn tstore(&mut self, address: Address, key: Uint<256, 4>, value: Uint<256, 4>)

Stores transient storage value.
§

fn log(&mut self, log: Log)

Logs the log in Journal state.
§

fn selfdestruct( &mut self, address: Address, target: Address, ) -> Result<StateLoad<SelfDestructResult>, <DB as Database>::Error>

Marks the account for selfdestruction and transfers all the balance to the target.
§

fn warm_account(&mut self, address: Address)

§

fn warm_precompiles(&mut self, address: HashSet<Address, RandomState>)

§

fn precompile_addresses(&self) -> &HashSet<Address, RandomState>

§

fn warm_account_and_storage( &mut self, address: Address, storage_keys: impl IntoIterator<Item = Uint<256, 4>>, ) -> Result<(), <<Journal<DB, ENTRY> as JournalTr>::Database as Database>::Error>

§

fn set_spec_id(&mut self, spec_id: SpecId)

§

fn transfer( &mut self, from: &Address, to: &Address, balance: Uint<256, 4>, ) -> Result<Option<TransferError>, <DB as Database>::Error>

§

fn touch_account(&mut self, address: Address)

§

fn inc_account_nonce( &mut self, address: Address, ) -> Result<Option<u64>, <DB as Database>::Error>

§

fn load_account( &mut self, address: Address, ) -> Result<StateLoad<&mut Account>, <DB as Database>::Error>

§

fn load_account_code( &mut self, address: Address, ) -> Result<StateLoad<&mut Account>, <DB as Database>::Error>

§

fn load_account_delegated( &mut self, address: Address, ) -> Result<StateLoad<AccountLoad>, <DB as Database>::Error>

§

fn checkpoint(&mut self) -> JournalCheckpoint

§

fn checkpoint_commit(&mut self)

§

fn checkpoint_revert(&mut self, checkpoint: JournalCheckpoint)

§

fn set_code_with_hash( &mut self, address: Address, code: Bytecode, hash: FixedBytes<32>, )

Sets bytecode with hash. Assume that account is warm.
§

fn clear(&mut self)

Called at the end of the transaction to clean all residue data from journal.
§

fn create_account_checkpoint( &mut self, caller: Address, address: Address, balance: Uint<256, 4>, spec_id: SpecId, ) -> Result<JournalCheckpoint, TransferError>

§

fn finalize(&mut self) -> <Journal<DB, ENTRY> as JournalTr>::FinalOutput

Does cleanup and returns modified state. Read more
§

fn set_code(&mut self, address: Address, code: Bytecode)

Sets bytecode and calculates hash. Read more
§

fn code( &mut self, address: Address, ) -> Result<StateLoad<Bytes>, <Self::Database as Database>::Error>

Returns account code bytes and if address is cold loaded. Read more
§

fn code_hash( &mut self, address: Address, ) -> Result<StateLoad<FixedBytes<32>>, <Self::Database as Database>::Error>

Gets code hash of account. Read more
§

impl<DB, ENTRY> PartialEq for Journal<DB, ENTRY>
where DB: PartialEq, ENTRY: PartialEq + JournalEntryTr,

§

fn eq(&self, other: &Journal<DB, ENTRY>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl<DB, ENTRY> Serialize for Journal<DB, ENTRY>
where ENTRY: JournalEntryTr + Serialize, DB: Serialize,

§

fn serialize<__S>( &self, __serializer: __S, ) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
§

impl<DB, ENTRY> Eq for Journal<DB, ENTRY>
where DB: Eq, ENTRY: Eq + JournalEntryTr,

§

impl<DB, ENTRY> StructuralPartialEq for Journal<DB, ENTRY>
where ENTRY: JournalEntryTr,

Auto Trait Implementations§

§

impl<DB, ENTRY> Freeze for Journal<DB, ENTRY>
where DB: Freeze,

§

impl<DB, ENTRY> RefUnwindSafe for Journal<DB, ENTRY>
where DB: RefUnwindSafe, ENTRY: RefUnwindSafe,

§

impl<DB, ENTRY> Send for Journal<DB, ENTRY>
where DB: Send, ENTRY: Send,

§

impl<DB, ENTRY> Sync for Journal<DB, ENTRY>
where DB: Sync, ENTRY: Sync,

§

impl<DB, ENTRY> Unpin for Journal<DB, ENTRY>
where DB: Unpin, ENTRY: Unpin,

§

impl<DB, ENTRY> UnwindSafe for Journal<DB, ENTRY>
where DB: UnwindSafe, ENTRY: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit #126799)
Performs copy-assignment from self to dst. Read more
§

impl<T> Conv for T

§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
Source§

impl<T> DynClone for T
where T: Clone,

Source§

fn __clone_box(&self, _: Private) -> *mut ()

§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
Source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

Source§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
§

impl<T> FmtForward for T

§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<TxEnv, T> FromRecoveredTx<&T> for TxEnv
where TxEnv: FromRecoveredTx<T>,

§

fn from_recovered_tx(tx: &&T, sender: Address) -> TxEnv

Builds a TxEnv from a transaction and a sender address.
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Paint for T
where T: ?Sized,

§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling [Attribute] value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi [Quirk] value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the [Condition] value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new [Painted] with a default [Style]. Read more
§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
§

impl<T> Pipe for T
where T: ?Sized,

§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> PolicyExt for T
where T: ?Sized,

§

fn and<P, B, E>(self, other: P) -> And<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns [Action::Follow] only if self and other return Action::Follow. Read more
§

fn or<P, B, E>(self, other: P) -> Or<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns [Action::Follow] if either self or other returns Action::Follow. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<T> Tap for T

§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T> TryClone for T
where T: Clone,

§

fn try_clone(&self) -> Result<T, Error>

Clones self, possibly returning an error.
§

impl<T> TryConv for T

§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<'de, T> BorrowedRpcObject<'de> for T
where T: RpcBorrow<'de> + RpcSend,

Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

§

impl<T> ErasedDestructor for T
where T: 'static,

§

impl<T> MaybeDebug for T
where T: Debug,

§

impl<T> MaybeSend for T
where T: Send,

§

impl<T> MaybeSendSync for T

§

impl<T> MaybeSerde for T
where T: Serialize + for<'de> Deserialize<'de>,

§

impl<T> NippyJarHeader for T
where T: Send + Sync + Serialize + for<'b> Deserialize<'b> + Debug + 'static,

§

impl<'de, T> RpcBorrow<'de> for T
where T: Deserialize<'de> + Debug + Send + Sync + Unpin,

§

impl<T> RpcObject for T
where T: RpcSend + RpcRecv,

§

impl<T> RpcRecv for T
where T: DeserializeOwned + Debug + Send + Sync + Unpin + 'static,

§

impl<T> RpcSend for T
where T: Serialize + Clone + Debug + Send + Sync + Unpin,

Layout§

Note: Unable to compute type layout, possibly due to this type having generic parameters. Layout can only be computed for concrete, fully-instantiated types.