reth_blockchain_tree/
state.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
//! Blockchain tree state.

use crate::{AppendableChain, BlockBuffer, BlockIndices};
use alloy_primitives::{BlockHash, BlockNumber};
use reth_primitives::{Receipt, SealedBlock, SealedBlockWithSenders};
use std::collections::{BTreeMap, HashMap};

/// Container to hold the state of the blockchain tree.
#[derive(Debug)]
pub(crate) struct TreeState {
    /// Keeps track of new unique identifiers for chains
    block_chain_id_generator: u64,
    /// The tracked chains and their current data.
    pub(crate) chains: HashMap<SidechainId, AppendableChain>,
    /// Indices to block and their connection to the canonical chain.
    ///
    /// This gets modified by the tree itself and is read from engine API/RPC to access the pending
    /// block for example.
    pub(crate) block_indices: BlockIndices,
    /// Unconnected block buffer.
    pub(crate) buffered_blocks: BlockBuffer,
}

impl TreeState {
    /// Initializes the tree state with the given last finalized block number and last canonical
    /// hashes.
    pub(crate) fn new(
        last_finalized_block_number: BlockNumber,
        last_canonical_hashes: impl IntoIterator<Item = (BlockNumber, BlockHash)>,
        buffer_limit: u32,
    ) -> Self {
        Self {
            block_chain_id_generator: 0,
            chains: Default::default(),
            block_indices: BlockIndices::new(
                last_finalized_block_number,
                BTreeMap::from_iter(last_canonical_hashes),
            ),
            buffered_blocks: BlockBuffer::new(buffer_limit),
        }
    }

    /// Issues a new unique identifier for a new sidechain.
    #[inline]
    fn next_id(&mut self) -> SidechainId {
        let id = self.block_chain_id_generator;
        self.block_chain_id_generator += 1;
        SidechainId(id)
    }

    /// Expose internal indices of the `BlockchainTree`.
    #[inline]
    pub(crate) const fn block_indices(&self) -> &BlockIndices {
        &self.block_indices
    }

    /// Returns the block with matching hash from any side-chain.
    ///
    /// Caution: This will not return blocks from the canonical chain.
    #[inline]
    pub(crate) fn block_by_hash(&self, block_hash: BlockHash) -> Option<&SealedBlock> {
        self.block_with_senders_by_hash(block_hash).map(|block| &block.block)
    }

    /// Returns the block with matching hash from any side-chain.
    ///
    /// Caution: This will not return blocks from the canonical chain.
    #[inline]
    pub(crate) fn block_with_senders_by_hash(
        &self,
        block_hash: BlockHash,
    ) -> Option<&SealedBlockWithSenders> {
        let id = self.block_indices.get_side_chain_id(&block_hash)?;
        let chain = self.chains.get(&id)?;
        chain.block_with_senders(block_hash)
    }

    /// Returns the block's receipts with matching hash from any side-chain.
    ///
    /// Caution: This will not return blocks from the canonical chain.
    pub(crate) fn receipts_by_block_hash(&self, block_hash: BlockHash) -> Option<Vec<&Receipt>> {
        let id = self.block_indices.get_side_chain_id(&block_hash)?;
        let chain = self.chains.get(&id)?;
        chain.receipts_by_block_hash(block_hash)
    }

    /// Insert a chain into the tree.
    ///
    /// Inserts a chain into the tree and builds the block indices.
    pub(crate) fn insert_chain(&mut self, chain: AppendableChain) -> Option<SidechainId> {
        if chain.is_empty() {
            return None
        }
        let chain_id = self.next_id();

        self.block_indices.insert_chain(chain_id, &chain);
        // add chain_id -> chain index
        self.chains.insert(chain_id, chain);
        Some(chain_id)
    }

    /// Checks the block buffer for the given block.
    pub(crate) fn get_buffered_block(&self, hash: &BlockHash) -> Option<&SealedBlockWithSenders> {
        self.buffered_blocks.block(hash)
    }

    /// Gets the lowest ancestor for the given block in the block buffer.
    pub(crate) fn lowest_buffered_ancestor(
        &self,
        hash: &BlockHash,
    ) -> Option<&SealedBlockWithSenders> {
        self.buffered_blocks.lowest_ancestor(hash)
    }
}

/// The ID of a sidechain internally in a [`BlockchainTree`][super::BlockchainTree].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
pub(crate) struct SidechainId(u64);

impl From<SidechainId> for u64 {
    fn from(value: SidechainId) -> Self {
        value.0
    }
}

#[cfg(test)]
impl From<u64> for SidechainId {
    fn from(value: u64) -> Self {
        Self(value)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::canonical_chain::CanonicalChain;
    use alloy_primitives::B256;
    use reth_execution_types::Chain;
    use reth_provider::ExecutionOutcome;

    #[test]
    fn test_tree_state_initialization() {
        // Set up some dummy data for initialization
        let last_finalized_block_number = 10u64;
        let last_canonical_hashes = vec![(9u64, B256::random()), (10u64, B256::random())];
        let buffer_limit = 5;

        // Initialize the tree state
        let tree_state = TreeState::new(
            last_finalized_block_number,
            last_canonical_hashes.clone(),
            buffer_limit,
        );

        // Verify the tree state after initialization
        assert_eq!(tree_state.block_chain_id_generator, 0);
        assert_eq!(tree_state.block_indices().last_finalized_block(), last_finalized_block_number);
        assert_eq!(
            *tree_state.block_indices.canonical_chain().inner(),
            *CanonicalChain::new(last_canonical_hashes.into_iter().collect()).inner()
        );
        assert!(tree_state.chains.is_empty());
        assert!(tree_state.buffered_blocks.lru.is_empty());
    }

    #[test]
    fn test_tree_state_next_id() {
        // Initialize the tree state
        let mut tree_state = TreeState::new(0, vec![], 5);

        // Generate a few sidechain IDs
        let first_id = tree_state.next_id();
        let second_id = tree_state.next_id();

        // Verify the generated sidechain IDs and the updated generator state
        assert_eq!(first_id, SidechainId(0));
        assert_eq!(second_id, SidechainId(1));
        assert_eq!(tree_state.block_chain_id_generator, 2);
    }

    #[test]
    fn test_tree_state_insert_chain() {
        // Initialize tree state
        let mut tree_state = TreeState::new(0, vec![], 5);

        // Create a chain with two blocks
        let block: SealedBlockWithSenders = Default::default();
        let block1_hash = B256::random();
        let block2_hash = B256::random();

        let mut block1 = block.clone();
        let mut block2 = block;

        block1.block.header.set_hash(block1_hash);
        block1.block.header.set_block_number(9);
        block2.block.header.set_hash(block2_hash);
        block2.block.header.set_block_number(10);

        let chain = AppendableChain::new(Chain::new(
            [block1, block2],
            Default::default(),
            Default::default(),
        ));

        // Insert the chain into the TreeState
        let chain_id = tree_state.insert_chain(chain).unwrap();

        // Verify the chain ID and that it was added to the chains collection
        assert_eq!(chain_id, SidechainId(0));
        assert!(tree_state.chains.contains_key(&chain_id));

        // Ensure that the block indices are updated
        assert_eq!(
            tree_state.block_indices.get_side_chain_id(&block1_hash).unwrap(),
            SidechainId(0)
        );
        assert_eq!(
            tree_state.block_indices.get_side_chain_id(&block2_hash).unwrap(),
            SidechainId(0)
        );

        // Ensure that the block chain ID generator was updated
        assert_eq!(tree_state.block_chain_id_generator, 1);

        // Create an empty chain
        let chain_empty = AppendableChain::new(Chain::default());

        // Insert the empty chain into the tree state
        let chain_id = tree_state.insert_chain(chain_empty);

        // Ensure that the empty chain was not inserted
        assert!(chain_id.is_none());

        // Nothing should have changed and no new chain should have been added
        assert!(tree_state.chains.contains_key(&SidechainId(0)));
        assert!(!tree_state.chains.contains_key(&SidechainId(1)));
        assert_eq!(
            tree_state.block_indices.get_side_chain_id(&block1_hash).unwrap(),
            SidechainId(0)
        );
        assert_eq!(
            tree_state.block_indices.get_side_chain_id(&block2_hash).unwrap(),
            SidechainId(0)
        );
        assert_eq!(tree_state.block_chain_id_generator, 1);
    }

    #[test]
    fn test_block_by_hash_side_chain() {
        // Initialize a tree state with some dummy data
        let mut tree_state = TreeState::new(0, vec![], 5);

        // Create two side-chain blocks with random hashes
        let block1_hash = B256::random();
        let block2_hash = B256::random();

        let mut block1: SealedBlockWithSenders = Default::default();
        let mut block2: SealedBlockWithSenders = Default::default();

        block1.block.header.set_hash(block1_hash);
        block1.block.header.set_block_number(9);
        block2.block.header.set_hash(block2_hash);
        block2.block.header.set_block_number(10);

        // Create an chain with these blocks
        let chain = AppendableChain::new(Chain::new(
            vec![block1.clone(), block2.clone()],
            Default::default(),
            Default::default(),
        ));

        // Insert the side chain into the TreeState
        tree_state.insert_chain(chain).unwrap();

        // Retrieve the blocks by their hashes
        let retrieved_block1 = tree_state.block_by_hash(block1_hash);
        assert_eq!(*retrieved_block1.unwrap(), block1.block);

        let retrieved_block2 = tree_state.block_by_hash(block2_hash);
        assert_eq!(*retrieved_block2.unwrap(), block2.block);

        // Test block_by_hash with a random hash that doesn't exist
        let non_existent_hash = B256::random();
        let result = tree_state.block_by_hash(non_existent_hash);

        // Ensure that no block is found
        assert!(result.is_none());
    }

    #[test]
    fn test_block_with_senders_by_hash() {
        // Initialize a tree state with some dummy data
        let mut tree_state = TreeState::new(0, vec![], 5);

        // Create two side-chain blocks with random hashes
        let block1_hash = B256::random();
        let block2_hash = B256::random();

        let mut block1: SealedBlockWithSenders = Default::default();
        let mut block2: SealedBlockWithSenders = Default::default();

        block1.block.header.set_hash(block1_hash);
        block1.block.header.set_block_number(9);
        block2.block.header.set_hash(block2_hash);
        block2.block.header.set_block_number(10);

        // Create a chain with these blocks
        let chain = AppendableChain::new(Chain::new(
            vec![block1.clone(), block2.clone()],
            Default::default(),
            Default::default(),
        ));

        // Insert the side chain into the TreeState
        tree_state.insert_chain(chain).unwrap();

        // Test to retrieve the blocks with senders by their hashes
        let retrieved_block1 = tree_state.block_with_senders_by_hash(block1_hash);
        assert_eq!(*retrieved_block1.unwrap(), block1);

        let retrieved_block2 = tree_state.block_with_senders_by_hash(block2_hash);
        assert_eq!(*retrieved_block2.unwrap(), block2);

        // Test block_with_senders_by_hash with a random hash that doesn't exist
        let non_existent_hash = B256::random();
        let result = tree_state.block_with_senders_by_hash(non_existent_hash);

        // Ensure that no block is found
        assert!(result.is_none());
    }

    #[test]
    fn test_get_buffered_block() {
        // Initialize a tree state with some dummy data
        let mut tree_state = TreeState::new(0, vec![], 5);

        // Create a block with a random hash and add it to the buffer
        let block_hash = B256::random();
        let mut block: SealedBlockWithSenders = Default::default();
        block.block.header.set_hash(block_hash);

        // Add the block to the buffered blocks in the TreeState
        tree_state.buffered_blocks.insert_block(block.clone());

        // Test get_buffered_block to retrieve the block by its hash
        let retrieved_block = tree_state.get_buffered_block(&block_hash);
        assert_eq!(*retrieved_block.unwrap(), block);

        // Test get_buffered_block with a non-existent hash
        let non_existent_hash = B256::random();
        let result = tree_state.get_buffered_block(&non_existent_hash);

        // Ensure that no block is found
        assert!(result.is_none());
    }

    #[test]
    fn test_lowest_buffered_ancestor() {
        // Initialize a tree state with some dummy data
        let mut tree_state = TreeState::new(0, vec![], 5);

        // Create blocks with random hashes and set up parent-child relationships
        let ancestor_hash = B256::random();
        let descendant_hash = B256::random();

        let mut ancestor_block: SealedBlockWithSenders = Default::default();
        let mut descendant_block: SealedBlockWithSenders = Default::default();

        ancestor_block.block.header.set_hash(ancestor_hash);
        descendant_block.block.header.set_hash(descendant_hash);
        descendant_block.block.header.set_parent_hash(ancestor_hash);

        // Insert the blocks into the buffer
        tree_state.buffered_blocks.insert_block(ancestor_block.clone());
        tree_state.buffered_blocks.insert_block(descendant_block.clone());

        // Test lowest_buffered_ancestor for the descendant block
        let lowest_ancestor = tree_state.lowest_buffered_ancestor(&descendant_hash);
        assert!(lowest_ancestor.is_some());
        assert_eq!(lowest_ancestor.unwrap().block.hash(), ancestor_hash);

        // Test lowest_buffered_ancestor with a non-existent hash
        let non_existent_hash = B256::random();
        let result = tree_state.lowest_buffered_ancestor(&non_existent_hash);

        // Ensure that no ancestor is found
        assert!(result.is_none());
    }

    #[test]
    fn test_receipts_by_block_hash() {
        // Initialize a tree state with some dummy data
        let mut tree_state = TreeState::new(0, vec![], 5);

        // Create a block with a random hash and receipts
        let block_hash = B256::random();
        let receipt1 = Receipt::default();
        let receipt2 = Receipt::default();

        let mut block: SealedBlockWithSenders = Default::default();
        block.block.header.set_hash(block_hash);

        let receipts = vec![receipt1, receipt2];

        // Create a chain with the block and its receipts
        let chain = AppendableChain::new(Chain::new(
            vec![block.clone()],
            ExecutionOutcome { receipts: receipts.clone().into(), ..Default::default() },
            Default::default(),
        ));

        // Insert the chain into the TreeState
        tree_state.insert_chain(chain).unwrap();

        // Test receipts_by_block_hash for the inserted block
        let retrieved_receipts = tree_state.receipts_by_block_hash(block_hash);
        assert!(retrieved_receipts.is_some());

        // Check if the correct receipts are returned
        let receipts_ref: Vec<&Receipt> = receipts.iter().collect();
        assert_eq!(retrieved_receipts.unwrap(), receipts_ref);

        // Test receipts_by_block_hash with a non-existent block hash
        let non_existent_hash = B256::random();
        let result = tree_state.receipts_by_block_hash(non_existent_hash);

        // Ensure that no receipts are found
        assert!(result.is_none());
    }
}