reth_blockchain_tree/
block_indices.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
//! Implementation of [`BlockIndices`] related to [`super::BlockchainTree`]

use super::state::SidechainId;
use crate::canonical_chain::CanonicalChain;
use alloy_eips::BlockNumHash;
use alloy_primitives::{BlockHash, BlockNumber};
use linked_hash_set::LinkedHashSet;
use reth_execution_types::Chain;
use reth_primitives::SealedBlockWithSenders;
use std::collections::{btree_map, hash_map, BTreeMap, BTreeSet, HashMap, HashSet};

/// Internal indices of the blocks and chains.
///
/// This is main connection between blocks, chains and canonical chain.
///
/// It contains a list of canonical block hashes, forks to child blocks, and a mapping of block hash
/// to chain ID.
#[derive(Debug, Clone)]
pub struct BlockIndices {
    /// Last finalized block.
    last_finalized_block: BlockNumber,
    /// Non-finalized canonical chain. Contains N number (depends on `finalization_depth`) of
    /// blocks. These blocks are found in `fork_to_child` but not inside `blocks_to_chain` or
    /// `number_to_block` as those are sidechain specific indices.
    canonical_chain: CanonicalChain,
    /// Index needed when discarding the chain, so we can remove connected chains from tree.
    ///
    /// This maintains insertion order for all child blocks, so
    /// [`BlockIndices::pending_block_num_hash`] returns always the same block: the first child
    /// block we inserted.
    ///
    /// NOTE: It contains just blocks that are forks as a key and not all blocks.
    fork_to_child: HashMap<BlockHash, LinkedHashSet<BlockHash>>,
    /// Utility index for Block number to block hash(s).
    ///
    /// This maps all blocks with same block number to their hash.
    ///
    /// Can be used for RPC fetch block(s) in chain by its number.
    ///
    /// Note: This is a bijection: at all times `blocks_to_chain` and this map contain the block
    /// hashes.
    block_number_to_block_hashes: BTreeMap<BlockNumber, HashSet<BlockHash>>,
    /// Block hashes to the sidechain IDs they belong to.
    blocks_to_chain: HashMap<BlockHash, SidechainId>,
}

impl BlockIndices {
    /// Create new block indices structure
    pub fn new(
        last_finalized_block: BlockNumber,
        canonical_chain: BTreeMap<BlockNumber, BlockHash>,
    ) -> Self {
        Self {
            last_finalized_block,
            canonical_chain: CanonicalChain::new(canonical_chain),
            fork_to_child: Default::default(),
            blocks_to_chain: Default::default(),
            block_number_to_block_hashes: Default::default(),
        }
    }

    /// Return fork to child indices
    pub const fn fork_to_child(&self) -> &HashMap<BlockHash, LinkedHashSet<BlockHash>> {
        &self.fork_to_child
    }

    /// Return block to sidechain id
    #[allow(dead_code)]
    pub(crate) const fn blocks_to_chain(&self) -> &HashMap<BlockHash, SidechainId> {
        &self.blocks_to_chain
    }

    /// Returns the hash and number of the pending block.
    ///
    /// It is possible that multiple child blocks for the canonical tip exist.
    /// This will always return the _first_ child we recorded for the canonical tip.
    pub(crate) fn pending_block_num_hash(&self) -> Option<BlockNumHash> {
        let canonical_tip = self.canonical_tip();
        let hash = self.fork_to_child.get(&canonical_tip.hash)?.front().copied()?;
        Some(BlockNumHash { number: canonical_tip.number + 1, hash })
    }

    /// Returns all pending block hashes.
    ///
    /// Pending blocks are considered blocks that are extending the canonical tip by one block
    /// number and have their parent hash set to the canonical tip.
    pub fn pending_blocks(&self) -> (BlockNumber, Vec<BlockHash>) {
        let canonical_tip = self.canonical_tip();
        let pending_blocks = self
            .fork_to_child
            .get(&canonical_tip.hash)
            .cloned()
            .unwrap_or_default()
            .into_iter()
            .collect();
        (canonical_tip.number + 1, pending_blocks)
    }

    /// Last finalized block
    pub const fn last_finalized_block(&self) -> BlockNumber {
        self.last_finalized_block
    }

    /// Insert non fork block.
    pub(crate) fn insert_non_fork_block(
        &mut self,
        block_number: BlockNumber,
        block_hash: BlockHash,
        chain_id: SidechainId,
    ) {
        self.block_number_to_block_hashes.entry(block_number).or_default().insert(block_hash);
        self.blocks_to_chain.insert(block_hash, chain_id);
    }

    /// Insert block to chain and fork child indices of the new chain
    pub(crate) fn insert_chain(&mut self, chain_id: SidechainId, chain: &Chain) {
        for (number, block) in chain.blocks() {
            // add block -> chain_id index
            self.blocks_to_chain.insert(block.hash(), chain_id);
            // add number -> block
            self.block_number_to_block_hashes.entry(*number).or_default().insert(block.hash());
        }
        let first = chain.first();
        // add parent block -> block index
        self.fork_to_child.entry(first.parent_hash).or_default().insert_if_absent(first.hash());
    }

    /// Get the [`SidechainId`] for the given block hash if it exists.
    pub(crate) fn get_side_chain_id(&self, block: &BlockHash) -> Option<SidechainId> {
        self.blocks_to_chain.get(block).copied()
    }

    /// Update all block hashes. iterate over present and new list of canonical hashes and compare
    /// them. Remove all mismatches, disconnect them and return all chains that needs to be
    /// removed.
    pub(crate) fn update_block_hashes(
        &mut self,
        hashes: BTreeMap<u64, BlockHash>,
    ) -> (BTreeSet<SidechainId>, Vec<BlockNumHash>) {
        // set new canonical hashes.
        self.canonical_chain.replace(hashes.clone());

        let mut new_hashes = hashes.into_iter();
        let mut old_hashes = self.canonical_chain().clone().into_iter();

        let mut removed = Vec::new();
        let mut added = Vec::new();

        let mut new_hash = new_hashes.next();
        let mut old_hash = old_hashes.next();

        loop {
            let Some(old_block_value) = old_hash else {
                // end of old_hashes canonical chain. New chain has more blocks than old chain.
                while let Some(new) = new_hash {
                    // add new blocks to added list.
                    added.push(new.into());
                    new_hash = new_hashes.next();
                }
                break
            };
            let Some(new_block_value) = new_hash else {
                // Old canonical chain had more block than new chain.
                // remove all present block.
                // this is mostly not going to happen as reorg should make new chain in Tree.
                while let Some(rem) = old_hash {
                    removed.push(rem);
                    old_hash = old_hashes.next();
                }
                break
            };
            // compare old and new canonical block number
            match new_block_value.0.cmp(&old_block_value.0) {
                std::cmp::Ordering::Less => {
                    // new chain has more past blocks than old chain
                    added.push(new_block_value.into());
                    new_hash = new_hashes.next();
                }
                std::cmp::Ordering::Equal => {
                    if new_block_value.1 != old_block_value.1 {
                        // remove block hash as it is different
                        removed.push(old_block_value);
                        added.push(new_block_value.into())
                    }
                    new_hash = new_hashes.next();
                    old_hash = old_hashes.next();
                }
                std::cmp::Ordering::Greater => {
                    // old chain has more past blocks than new chain
                    removed.push(old_block_value);
                    old_hash = old_hashes.next()
                }
            }
        }

        // remove children of removed blocks
        (
            removed.into_iter().fold(BTreeSet::new(), |mut fold, (number, hash)| {
                fold.extend(self.remove_block(number, hash));
                fold
            }),
            added,
        )
    }

    /// Remove chain from indices and return dependent chains that need to be removed.
    /// Does the cleaning of the tree and removing blocks from the chain.
    pub(crate) fn remove_chain(&mut self, chain: &Chain) -> BTreeSet<SidechainId> {
        chain
            .blocks()
            .iter()
            .flat_map(|(block_number, block)| {
                let block_hash = block.hash();
                self.remove_block(*block_number, block_hash)
            })
            .collect()
    }

    /// Remove Blocks from indices.
    fn remove_block(
        &mut self,
        block_number: BlockNumber,
        block_hash: BlockHash,
    ) -> BTreeSet<SidechainId> {
        // rm number -> block
        if let btree_map::Entry::Occupied(mut entry) =
            self.block_number_to_block_hashes.entry(block_number)
        {
            let set = entry.get_mut();
            set.remove(&block_hash);
            // remove set if empty
            if set.is_empty() {
                entry.remove();
            }
        }

        // rm block -> chain_id
        self.blocks_to_chain.remove(&block_hash);

        // rm fork -> child
        let removed_fork = self.fork_to_child.remove(&block_hash);
        removed_fork
            .map(|fork_blocks| {
                fork_blocks
                    .into_iter()
                    .filter_map(|fork_child| self.blocks_to_chain.remove(&fork_child))
                    .collect()
            })
            .unwrap_or_default()
    }

    /// Remove all blocks from canonical list and insert new blocks to it.
    ///
    /// It is assumed that blocks are interconnected and that they connect to canonical chain
    pub fn canonicalize_blocks(&mut self, blocks: &BTreeMap<BlockNumber, SealedBlockWithSenders>) {
        if blocks.is_empty() {
            return
        }

        // Remove all blocks from canonical chain
        let first_number = *blocks.first_key_value().unwrap().0;

        // this will remove all blocks numbers that are going to be replaced.
        self.canonical_chain.retain(|&number, _| number < first_number);

        // remove them from block to chain_id index
        blocks.iter().map(|(_, b)| (b.number, b.hash(), b.parent_hash)).for_each(
            |(number, hash, parent_hash)| {
                // rm block -> chain_id
                self.blocks_to_chain.remove(&hash);

                // rm number -> block
                if let btree_map::Entry::Occupied(mut entry) =
                    self.block_number_to_block_hashes.entry(number)
                {
                    let set = entry.get_mut();
                    set.remove(&hash);
                    // remove set if empty
                    if set.is_empty() {
                        entry.remove();
                    }
                }
                // rm fork block -> hash
                if let hash_map::Entry::Occupied(mut entry) = self.fork_to_child.entry(parent_hash)
                {
                    let set = entry.get_mut();
                    set.remove(&hash);
                    // remove set if empty
                    if set.is_empty() {
                        entry.remove();
                    }
                }
            },
        );

        // insert new canonical
        self.canonical_chain.extend(blocks.iter().map(|(number, block)| (*number, block.hash())))
    }

    /// this is function that is going to remove N number of last canonical hashes.
    ///
    /// NOTE: This is not safe standalone, as it will not disconnect
    /// blocks that depend on unwinded canonical chain. And should be
    /// used when canonical chain is reinserted inside Tree.
    pub(crate) fn unwind_canonical_chain(&mut self, unwind_to: BlockNumber) {
        // this will remove all blocks numbers that are going to be replaced.
        self.canonical_chain.retain(|num, _| *num <= unwind_to);
    }

    /// Used for finalization of block.
    ///
    /// Return list of chains for removal that depend on finalized canonical chain.
    pub(crate) fn finalize_canonical_blocks(
        &mut self,
        finalized_block: BlockNumber,
        num_of_additional_canonical_hashes_to_retain: u64,
    ) -> BTreeSet<SidechainId> {
        // get finalized chains. blocks between [self.last_finalized,finalized_block).
        // Dont remove finalized_block, as sidechain can point to it.
        let finalized_blocks: Vec<BlockHash> = self
            .canonical_chain
            .iter()
            .filter(|(number, _)| *number >= self.last_finalized_block && *number < finalized_block)
            .map(|(_, hash)| hash)
            .collect();

        // remove unneeded canonical hashes.
        let remove_until =
            finalized_block.saturating_sub(num_of_additional_canonical_hashes_to_retain);
        self.canonical_chain.retain(|&number, _| number >= remove_until);

        let mut lose_chains = BTreeSet::new();

        for block_hash in finalized_blocks {
            // there is a fork block.
            if let Some(fork_blocks) = self.fork_to_child.remove(&block_hash) {
                lose_chains = fork_blocks.into_iter().fold(lose_chains, |mut fold, fork_child| {
                    if let Some(lose_chain) = self.blocks_to_chain.remove(&fork_child) {
                        fold.insert(lose_chain);
                    }
                    fold
                });
            }
        }

        // set last finalized block.
        self.last_finalized_block = finalized_block;

        lose_chains
    }

    /// Returns the block hash of the canonical block with the given number.
    #[inline]
    pub fn canonical_hash(&self, block_number: &BlockNumber) -> Option<BlockHash> {
        self.canonical_chain.canonical_hash(block_number)
    }

    /// Returns the block number of the canonical block with the given hash.
    #[inline]
    pub fn canonical_number(&self, block_hash: &BlockHash) -> Option<BlockNumber> {
        self.canonical_chain.canonical_number(block_hash)
    }

    /// get canonical tip
    #[inline]
    pub fn canonical_tip(&self) -> BlockNumHash {
        self.canonical_chain.tip()
    }

    /// Canonical chain needed for execution of EVM. It should contain last 256 block hashes.
    #[inline]
    pub(crate) const fn canonical_chain(&self) -> &CanonicalChain {
        &self.canonical_chain
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloy_consensus::Header;
    use alloy_primitives::B256;
    use reth_primitives::{SealedBlock, SealedHeader};

    #[test]
    fn pending_block_num_hash_returns_none_if_no_fork() {
        // Create a new canonical chain with a single block (represented by its number and hash).
        let canonical_chain = BTreeMap::from([(0, B256::from_slice(&[1; 32]))]);

        let block_indices = BlockIndices::new(0, canonical_chain);

        // No fork to child blocks, so there is no pending block.
        assert_eq!(block_indices.pending_block_num_hash(), None);
    }

    #[test]
    fn pending_block_num_hash_works() {
        // Create a canonical chain with multiple blocks at heights 1, 2, and 3.
        let canonical_chain = BTreeMap::from([
            (1, B256::from_slice(&[1; 32])),
            (2, B256::from_slice(&[2; 32])),
            (3, B256::from_slice(&[3; 32])),
        ]);

        let mut block_indices = BlockIndices::new(3, canonical_chain);

        // Define the hash of the parent block (the block at height 3 in the canonical chain).
        let parent_hash = B256::from_slice(&[3; 32]);

        // Define the hashes of two child blocks that extend the canonical chain.
        let child_hash_1 = B256::from_slice(&[2; 32]);
        let child_hash_2 = B256::from_slice(&[3; 32]);

        // Create a set to store both child block hashes.
        let mut child_set = LinkedHashSet::new();
        child_set.insert(child_hash_1);
        child_set.insert(child_hash_2);

        // Associate the parent block hash with its children in the fork_to_child mapping.
        block_indices.fork_to_child.insert(parent_hash, child_set);

        // Pending block should be the first child block.
        assert_eq!(
            block_indices.pending_block_num_hash(),
            Some(BlockNumHash { number: 4, hash: child_hash_1 })
        );
    }

    #[test]
    fn pending_blocks_returns_empty_if_no_fork() {
        // Create a canonical chain with a single block at height 10.
        let canonical_chain = BTreeMap::from([(10, B256::from_slice(&[1; 32]))]);
        let block_indices = BlockIndices::new(0, canonical_chain);

        // No child blocks are associated with the canonical tip.
        assert_eq!(block_indices.pending_blocks(), (11, Vec::new()));
    }

    #[test]
    fn pending_blocks_returns_multiple_children() {
        // Define the hash of the parent block (the block at height 5 in the canonical chain).
        let parent_hash = B256::from_slice(&[3; 32]);

        // Create a canonical chain with a block at height 5.
        let canonical_chain = BTreeMap::from([(5, parent_hash)]);
        let mut block_indices = BlockIndices::new(0, canonical_chain);

        // Define the hashes of two child blocks.
        let child_hash_1 = B256::from_slice(&[4; 32]);
        let child_hash_2 = B256::from_slice(&[5; 32]);

        // Create a set to store both child block hashes.
        let mut child_set = LinkedHashSet::new();
        child_set.insert(child_hash_1);
        child_set.insert(child_hash_2);

        // Associate the parent block hash with its children.
        block_indices.fork_to_child.insert(parent_hash, child_set);

        // Pending blocks should be the two child blocks.
        assert_eq!(block_indices.pending_blocks(), (6, vec![child_hash_1, child_hash_2]));
    }

    #[test]
    fn pending_blocks_with_multiple_forked_chains() {
        // Define hashes for parent blocks and child blocks.
        let parent_hash_1 = B256::from_slice(&[6; 32]);
        let parent_hash_2 = B256::from_slice(&[7; 32]);

        // Create a canonical chain with blocks at heights 1 and 2.
        let canonical_chain = BTreeMap::from([(1, parent_hash_1), (2, parent_hash_2)]);

        let mut block_indices = BlockIndices::new(2, canonical_chain);

        // Define hashes for child blocks.
        let child_hash_1 = B256::from_slice(&[8; 32]);
        let child_hash_2 = B256::from_slice(&[9; 32]);

        // Create sets to store child blocks for each parent block.
        let mut child_set_1 = LinkedHashSet::new();
        let mut child_set_2 = LinkedHashSet::new();
        child_set_1.insert(child_hash_1);
        child_set_2.insert(child_hash_2);

        // Associate parent block hashes with their child blocks.
        block_indices.fork_to_child.insert(parent_hash_1, child_set_1);
        block_indices.fork_to_child.insert(parent_hash_2, child_set_2);

        // Check that the pending blocks are only those extending the canonical tip.
        assert_eq!(block_indices.pending_blocks(), (3, vec![child_hash_2]));
    }

    #[test]
    fn insert_non_fork_block_adds_block_correctly() {
        // Create a new BlockIndices instance with an empty state.
        let mut block_indices = BlockIndices::new(0, BTreeMap::new());

        // Define test parameters.
        let block_number = 1;
        let block_hash = B256::from_slice(&[1; 32]);
        let chain_id = SidechainId::from(42);

        // Insert the block into the BlockIndices instance.
        block_indices.insert_non_fork_block(block_number, block_hash, chain_id);

        // Check that the block number to block hashes mapping includes the new block hash.
        assert_eq!(
            block_indices.block_number_to_block_hashes.get(&block_number),
            Some(&HashSet::from([block_hash]))
        );

        // Check that the block hash to chain ID mapping includes the new entry.
        assert_eq!(block_indices.blocks_to_chain.get(&block_hash), Some(&chain_id));
    }

    #[test]
    fn insert_non_fork_block_combined_tests() {
        // Create a new BlockIndices instance with an empty state.
        let mut block_indices = BlockIndices::new(0, BTreeMap::new());

        // Define test parameters.
        let block_number_1 = 2;
        let block_hash_1 = B256::from_slice(&[1; 32]);
        let block_hash_2 = B256::from_slice(&[2; 32]);
        let chain_id_1 = SidechainId::from(84);

        let block_number_2 = 4;
        let block_hash_3 = B256::from_slice(&[3; 32]);
        let chain_id_2 = SidechainId::from(200);

        // Insert multiple hashes for the same block number.
        block_indices.insert_non_fork_block(block_number_1, block_hash_1, chain_id_1);
        block_indices.insert_non_fork_block(block_number_1, block_hash_2, chain_id_1);

        // Insert blocks with different numbers.
        block_indices.insert_non_fork_block(block_number_2, block_hash_3, chain_id_2);

        // Block number 1 should have two block hashes associated with it.
        let mut expected_hashes_for_block_1 = HashSet::default();
        expected_hashes_for_block_1.insert(block_hash_1);
        expected_hashes_for_block_1.insert(block_hash_2);
        assert_eq!(
            block_indices.block_number_to_block_hashes.get(&block_number_1),
            Some(&expected_hashes_for_block_1)
        );

        // Check that the block hashes for block_number_1 are associated with the correct chain ID.
        assert_eq!(block_indices.blocks_to_chain.get(&block_hash_1), Some(&chain_id_1));
        assert_eq!(block_indices.blocks_to_chain.get(&block_hash_2), Some(&chain_id_1));

        // Block number 2 should have a single block hash associated with it.
        assert_eq!(
            block_indices.block_number_to_block_hashes.get(&block_number_2),
            Some(&HashSet::from([block_hash_3]))
        );

        // Block hash 3 should be associated with the correct chain ID.
        assert_eq!(block_indices.blocks_to_chain.get(&block_hash_3), Some(&chain_id_2));
    }

    #[test]
    fn insert_chain_validates_insertion() {
        // Create a new BlockIndices instance with an empty state.
        let mut block_indices = BlockIndices::new(0, BTreeMap::new());

        // Define test parameters.
        let chain_id = SidechainId::from(42);

        // Define some example blocks and their hashes.
        let block_hash_1 = B256::from_slice(&[1; 32]);
        let block_hash_2 = B256::from_slice(&[2; 32]);
        let parent_hash = B256::from_slice(&[0; 32]);

        // Define blocks with their numbers and parent hashes.
        let block_1 = SealedBlockWithSenders {
            block: SealedBlock {
                header: SealedHeader::new(
                    Header { parent_hash, number: 1, ..Default::default() },
                    block_hash_1,
                ),
                ..Default::default()
            },
            ..Default::default()
        };
        let block_2 = SealedBlockWithSenders {
            block: SealedBlock {
                header: SealedHeader::new(
                    Header { parent_hash: block_hash_1, number: 2, ..Default::default() },
                    block_hash_2,
                ),
                ..Default::default()
            },
            ..Default::default()
        };

        // Define a chain containing the blocks.
        let chain = Chain::new(vec![block_1, block_2], Default::default(), Default::default());

        // Insert the chain into the BlockIndices.
        block_indices.insert_chain(chain_id, &chain);

        // Check that the blocks are correctly mapped to the chain ID.
        assert_eq!(block_indices.blocks_to_chain.get(&block_hash_1), Some(&chain_id));
        assert_eq!(block_indices.blocks_to_chain.get(&block_hash_2), Some(&chain_id));

        // Check that block numbers map to their respective hashes.
        let mut expected_hashes_1 = HashSet::default();
        expected_hashes_1.insert(block_hash_1);
        assert_eq!(block_indices.block_number_to_block_hashes.get(&1), Some(&expected_hashes_1));

        let mut expected_hashes_2 = HashSet::default();
        expected_hashes_2.insert(block_hash_2);
        assert_eq!(block_indices.block_number_to_block_hashes.get(&2), Some(&expected_hashes_2));

        // Check that the fork_to_child mapping contains the correct parent-child relationship.
        // We take the first block of the chain.
        let mut expected_children = LinkedHashSet::new();
        expected_children.insert(block_hash_1);
        assert_eq!(block_indices.fork_to_child.get(&parent_hash), Some(&expected_children));
    }
}