1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
use crate::{
    hashed_cursor::{HashedCursorFactory, HashedStorageCursor},
    node_iter::{TrieElement, TrieNodeIter},
    prefix_set::TriePrefixSetsMut,
    trie_cursor::TrieCursorFactory,
    walker::TrieWalker,
    HashBuilder, Nibbles,
};
use alloy_primitives::{keccak256, Address, B256};
use alloy_rlp::{BufMut, Encodable};
use reth_execution_errors::trie::StateProofError;
use reth_trie_common::{
    proof::ProofRetainer, AccountProof, MultiProof, StorageMultiProof, TrieAccount,
};
use std::collections::{HashMap, HashSet};

/// A struct for generating merkle proofs.
///
/// Proof generator adds the target address and slots to the prefix set, enables the proof retainer
/// on the hash builder and follows the same algorithm as the state root calculator.
/// See `StateRoot::root` for more info.
#[derive(Debug)]
pub struct Proof<T, H> {
    /// The factory for traversing trie nodes.
    trie_cursor_factory: T,
    /// The factory for hashed cursors.
    hashed_cursor_factory: H,
    /// A set of prefix sets that have changes.
    prefix_sets: TriePrefixSetsMut,
    /// Proof targets.
    targets: HashMap<B256, HashSet<B256>>,
}

impl<T, H> Proof<T, H> {
    /// Create a new [Proof] instance.
    pub fn new(t: T, h: H) -> Self {
        Self {
            trie_cursor_factory: t,
            hashed_cursor_factory: h,
            prefix_sets: TriePrefixSetsMut::default(),
            targets: HashMap::default(),
        }
    }

    /// Set the trie cursor factory.
    pub fn with_trie_cursor_factory<TF>(self, trie_cursor_factory: TF) -> Proof<TF, H> {
        Proof {
            trie_cursor_factory,
            hashed_cursor_factory: self.hashed_cursor_factory,
            prefix_sets: self.prefix_sets,
            targets: self.targets,
        }
    }

    /// Set the hashed cursor factory.
    pub fn with_hashed_cursor_factory<HF>(self, hashed_cursor_factory: HF) -> Proof<T, HF> {
        Proof {
            trie_cursor_factory: self.trie_cursor_factory,
            hashed_cursor_factory,
            prefix_sets: self.prefix_sets,
            targets: self.targets,
        }
    }

    /// Set the prefix sets. They have to be mutable in order to allow extension with proof target.
    pub fn with_prefix_sets_mut(mut self, prefix_sets: TriePrefixSetsMut) -> Self {
        self.prefix_sets = prefix_sets;
        self
    }

    /// Set the target account and slots.
    pub fn with_target(self, target: (B256, HashSet<B256>)) -> Self {
        self.with_targets(HashMap::from([target]))
    }

    /// Set the target accounts and slots.
    pub fn with_targets(mut self, targets: HashMap<B256, HashSet<B256>>) -> Self {
        self.targets = targets;
        self
    }
}

impl<T, H> Proof<T, H>
where
    T: TrieCursorFactory,
    H: HashedCursorFactory + Clone,
{
    /// Generate an account proof from intermediate nodes.
    pub fn account_proof(
        self,
        address: Address,
        slots: &[B256],
    ) -> Result<AccountProof, StateProofError> {
        Ok(self
            .with_target((keccak256(address), slots.iter().map(keccak256).collect()))
            .multiproof()?
            .account_proof(address, slots)?)
    }

    /// Generate a state multiproof according to specified targets.
    pub fn multiproof(&self) -> Result<MultiProof, StateProofError> {
        let hashed_account_cursor = self.hashed_cursor_factory.hashed_account_cursor()?;
        let trie_cursor = self.trie_cursor_factory.account_trie_cursor()?;

        // Create the walker.
        let mut prefix_set = self.prefix_sets.account_prefix_set.clone();
        prefix_set.extend(self.targets.keys().map(Nibbles::unpack));
        let walker = TrieWalker::new(trie_cursor, prefix_set.freeze());

        // Create a hash builder to rebuild the root node since it is not available in the database.
        let retainer = ProofRetainer::from_iter(self.targets.keys().map(Nibbles::unpack));
        let mut hash_builder = HashBuilder::default().with_proof_retainer(retainer);

        let mut storages = HashMap::default();
        let mut account_rlp = Vec::with_capacity(128);
        let mut account_node_iter = TrieNodeIter::new(walker, hashed_account_cursor);
        while let Some(account_node) = account_node_iter.try_next()? {
            match account_node {
                TrieElement::Branch(node) => {
                    hash_builder.add_branch(node.key, node.value, node.children_are_in_trie);
                }
                TrieElement::Leaf(hashed_address, account) => {
                    let storage_multiproof = self.storage_multiproof(hashed_address)?;

                    // Encode account
                    account_rlp.clear();
                    let account = TrieAccount::from((account, storage_multiproof.root));
                    account.encode(&mut account_rlp as &mut dyn BufMut);

                    hash_builder.add_leaf(Nibbles::unpack(hashed_address), &account_rlp);
                    storages.insert(hashed_address, storage_multiproof);
                }
            }
        }
        let _ = hash_builder.root();
        Ok(MultiProof { account_subtree: hash_builder.take_proofs(), storages })
    }

    /// Generate a storage multiproof according to specified targets.
    pub fn storage_multiproof(
        &self,
        hashed_address: B256,
    ) -> Result<StorageMultiProof, StateProofError> {
        let mut hashed_storage_cursor =
            self.hashed_cursor_factory.hashed_storage_cursor(hashed_address)?;

        // short circuit on empty storage
        if hashed_storage_cursor.is_storage_empty()? {
            return Ok(StorageMultiProof::default())
        }

        let target_nibbles = self
            .targets
            .get(&hashed_address)
            .map_or(Vec::new(), |slots| slots.iter().map(Nibbles::unpack).collect());

        let mut prefix_set =
            self.prefix_sets.storage_prefix_sets.get(&hashed_address).cloned().unwrap_or_default();
        prefix_set.extend(target_nibbles.clone());
        let trie_cursor = self.trie_cursor_factory.storage_trie_cursor(hashed_address)?;
        let walker = TrieWalker::new(trie_cursor, prefix_set.freeze());

        let retainer = ProofRetainer::from_iter(target_nibbles);
        let mut hash_builder = HashBuilder::default().with_proof_retainer(retainer);
        let mut storage_node_iter = TrieNodeIter::new(walker, hashed_storage_cursor);
        while let Some(node) = storage_node_iter.try_next()? {
            match node {
                TrieElement::Branch(node) => {
                    hash_builder.add_branch(node.key, node.value, node.children_are_in_trie);
                }
                TrieElement::Leaf(hashed_slot, value) => {
                    hash_builder.add_leaf(
                        Nibbles::unpack(hashed_slot),
                        alloy_rlp::encode_fixed_size(&value).as_ref(),
                    );
                }
            }
        }

        let root = hash_builder.root();
        Ok(StorageMultiProof { root, subtree: hash_builder.take_proofs() })
    }
}